Skip to main content

Polyhedra of Finite State Machines and Their Use in the Identification Problem

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN 2020, ruSMART 2020)

Abstract

The possible sets of joint distribution of the word occurrence frequencies in the finite state machine input and output sequences are considered. A geometric description of such sets as convex polyhedra in a real unit cube of suitable dimension is proposed. A method has been developed for comparison of unknown and reference automata by the observed input and output sequence fragments. The method does not require installation to the fixed initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Marsaglia, G.: Random numbers fall mainly in the planes. Proc. Natl. Acad. Sci. 61(1968), 5–28 (1968)

    MathSciNet  MATH  Google Scholar 

  2. Haramoto, H., Matsumoto, M.: Again, random numbers fall mainly in the planes: xorshift128+, arxiv.org/abs/1908.10020. Accessed 30 Jun 2020

  3. Tverdokhlebov, V.A.: Geometrical approach to technical diagnosing of automatons. In: Proceedings of the IEEE East-West Design & Test Symposium, EWDTS 2011, National University of Radioelectronics, Kharkov, pp. 240–243 (2011)

    Google Scholar 

  4. Babash, A.V.: Automaton barriers. Math. Notes 91(5–6), 625–629 (2012)

    Article  MathSciNet  Google Scholar 

  5. Parkhomenko, D.V.: Automata generated p-languages. Discrete Math. Appl. 24(4), 207–212 (2014)

    Article  MathSciNet  Google Scholar 

  6. Chatterjee, K., Doyen, L., Edelsbrunner, H., Henzinger, T.A., Rannou, P.: Mean-payoff automaton expressions. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 269–283. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_19

    Chapter  Google Scholar 

  7. Grusho, A.A., Timonina, E.E.: Prohibitions in discrete probabilistic statistical problems. Discrete Math. Appl. 21(3), 275–281 (2011)

    Article  MathSciNet  Google Scholar 

  8. Gerasimenko, M., Petrov, V., Galinina, O., Andreev, S., Koucheryavy, Y.: Energy and delay analysis of LTE-Advanced RACH performance under MTC overload. In: 2012 IEEE Globecom Workshops, GC Wkshps 2012, pp. 1632–1637 (2012). Art. no. 6477830

    Google Scholar 

  9. Pyattaev, A., Johnsson, K., Surak, A., Florea, R., Andreev, S., Koucheryavy, Y.: Network-assisted D2D communications: implementing a technology prototype for cellular traffic offloading. In: IEEE Wireless Communications and Networking Conference, WCNC, pp. 3266–3271 (2014). Art. no. 6953070

    Google Scholar 

  10. Ometov, A., et al.: Toward trusted, social-aware D2D connectivity: bridging across the technology and sociality realms. IEEE Wirel. Commun. 23(4), 103–111 (2016). Art. no. 7553033

    Article  Google Scholar 

  11. Jacobs, K.: Turing-Maschinen und zufällige 0–1-Folgen. In: Jacobs, K. (ed.) Selecta Mathematica II Heidelberger Taschenbücher, vol. 67, pp. 141–167. Springer, Heidelberg (1970). https://doi.org/10.1007/978-3-642-88162-6_6

    Chapter  Google Scholar 

  12. Johnson, D.B.: Finding all the elementary circuits of a directed graph. SIAM J. Comput. 4(1), 77–84 (1975)

    Article  MathSciNet  Google Scholar 

  13. Liu, H., Wang, J.: A new way to enumerate cycles in graph. In: Proceedings of the Advanced International Conference on Telecommunications and International Conference on Internet and Web Applications and Services, AICT-ICIW 2006, Washington, DC, USA, pp. 57–59 (2006)

    Google Scholar 

  14. Preparata, F.P., Shamos, M.I.: Computational Geometry - An Introduction. Monographs in Computer Science. Springer, New York (1988). https://doi.org/10.1007/978-1-4612-1098-6

    Book  MATH  Google Scholar 

  15. Skala, V.: Point-in-convex polygon and point-in-convex polyhedron algorithms with O(1) complexity using space subdivision. In: ICNAAM 2015, pp. 22–28. AIP Publishing LLC. (2015)

    Google Scholar 

Download references

Acknowledgements

The publication has been prepared with the support of the RUDN University Program “5-100” (recipient K. Samouylov). The reported study was funded by RFBR, project numbers 19-07-00933 and 18-00-01555 (18-00-01685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Yu. Melnikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Melnikov, S.Y., Samouylov, K.E. (2020). Polyhedra of Finite State Machines and Their Use in the Identification Problem. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. NEW2AN ruSMART 2020 2020. Lecture Notes in Computer Science(), vol 12526. Springer, Cham. https://doi.org/10.1007/978-3-030-65729-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65729-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65728-4

  • Online ISBN: 978-3-030-65729-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics