
Comparative Analysis of Cryptographic Key

Management Systems

Ievgeniia Kuzminykh1[0000-0001-6917-4234], Bogdan Ghita2[0000-0002-1788-547X] and Stavros

Shiaeles3[0000-0003-3866-0672]

1 King’s College London, Strand, London, WC2R 2LS, UK
ievgeniia.kuzminykh@kcl.ac.uk

2 University of Plymouth, Drake Circus, Plymouth, PL4 8AA UK
bogdan.ghita@plymouth.ac.uk

3 University of Portsmouth, Portsmouth, PO1 3RR, UK

stavros.shiaeles@port.ac.uk

Abstract. Managing cryptographic keys can be a complex task for an enter-

prise and particularly difficult to scale when an increasing number of users and

applications need to be managed. In order to address scalability issues, typical IT

infrastructures employ key management systems that are able to handle a large

number of encryption keys and associate them with the authorized requests.

Given their necessity, recent years have witnessed a variety of key management

systems, aligned with the features, quality, price and security needs of specific

organisations. While the spectrum of such solutions is welcome and demonstrates

the expanding nature of the market, it also makes it time consuming for IT man-

agers to identify the appropriate system for their respective company needs. This

paper provides a list of key management tools which include a minimum set of

features, such as availability of secure database for managing keys, an authenti-

cation, authorization, and access control model for restricting and managing ac-

cess to keys, effective logging of actions with keys, and the presence of an API

for accessing functions directly from the application code. Five systems were

comprehensively compared by evaluating the attributes related to complexity of

the implementation, its popularity, linked vulnerabilities and technical perfor-

mance in terms of response time and network usage. These were Pinterest Knox,

Hashicorp Vault, Square Keywhiz, OpenStack Barbican, and Cyberark Conjur.

Out of these five, Hachicorp Vault was determined to be the most suitable system

for small businesses.

Keywords: Cryptography, Key Distribution, Key Management Service, Secret

Handling.

1 Introduction

The complexity and reliability of any cryptosystem is based on the use of crypto-

graphic keys. The key exchange is one of the mechanisms at core of the process and it

ensure confidentiality when exchanging information between users and its behaviour is

well-explained for small systems. However, in larger IT infrastructures, reaching hun-

dreds or thousands of users, the process of handling the cryptographic keys for

individual business applications is an increasingly difficult task and poses significant

challenges as manual decentralized control is expensive and error prone. Such complex

environments, including a large number of systems, group accounts, and users associ-

ated with them require a convenient and effective way to manage them. The solution is

to use a cryptographic key management system (KMS) that provides a unified interface

for managing keys, increase security of the enterprise network, provide scalability, and

minimize human errors [1]. If an IT infrastructure does not include a sufficiently relia-

ble management of key information then, having taken possession of it, an attacker may

also gain access to the stored information, user accounts, their associated information

and any databases [2].

A cryptographic KMS is a centralized system that provides key generation, key stor-

age and key distribution, as well as automatic expiration, updating, re-placement, back-

up and revocation of keys, all for a wide range of applications [3, 4]. A typical example

of a large scale KMS is a public-key infrastructure PKI, which uses hierarchical digital

certificates for authentication and public keys for encryption.

Given their necessity for current IT infrastructure, several key management methods

and tools are available on the market, varying in terms of cost, complexity and use

cases. In this context, selecting the most suitable option becomes a challenge, since

some of these solutions may be impractical or difficult to implement; as a result, the

process of selection can be time consuming or unfeasible for an organisation that does

not have enough resources to conduct such an assessment. This study aims to address

this problem by comprehensively comparing the existing key management systems that

match a set of attributes important for small businesses, such as simplicity of installa-

tion, ease of usage, performance and price, that may take precedence over scalability

and security.

2 Key Management System Architecture and Features

A Key Management System is used to centrally distribute and store all keys used by an

organisation and may take various forms, ranging from free small applications that run

on conventional computer equipment to complex hardware solutions. Simple, open

source solutions often rely on a regular database server for storage that stores keys en-

crypted in the database. However, due to the importance of the key management sys-

tem, an appropriately designed system should include a hardware security module for

key processing, or at least consider such an option [5].

The typical components of a KMS include the KMS Server, the KMS Client, the

Hardware Security Module (HSM) and a database [6, 7], as summarised in the archi-

tecture on Fig.1.

The KMS Server is the central part of the system, where the actual key management

takes place; this module is also responsible for the all operation related to the encryption

key lifecycle, from generation, then activation, expiration and then destruction, as well

as the key allocation against targets [8]. In order to deliver its functionality, the KMS

Server connects to its dedicated HSM and a database to provide key management and

key requesting services.

The KMS Client provides a graphical user interface for users to manage and operate

the KMS server. While less critical in terms of process and security provision, this en-

tity is essential for the customer, because it reflects system usability, attractiveness, and

simplicity.

The Hardware Security Module is used by KMS to ensure the quality of keys gen-

erated and the protection of these keys while in storage or in transit. HSM can perform

a number of important security-related cryptographic operations such as encryption,

hashing, digital signing, and Message Authentication Codes (MAC). Additionally, so-

phisticated techniques can be used to ensure that keys are never present in unencrypted

form in server memory or client machines [5]. Typically, an HSM is installed inside a

server or within an Ethernet cluster within corporate network.

The Database stores all data, but sensitive information such as keys and key com-

ponents are also encrypted under the master key generated by the HSM. Keys only exist

in clear text inside the HSM. Other sensitive data, for example settings and logs, are

integrity protected by a hardware MAC key so that the data cannot be edited without

the server. Different solutions may choose to implement their respective databases us-

ing any preferred database management systems, such as Oracle, MySQL, PostgreSQL,

DB2, Redis, etc.

Fig. 1. Architecture of KMS with functions and applications.

The variety of use case where a KMS can be deployed and where keys are necessary

to be securely handled makes it likely that customers have many reasons to use KMS

in their business-critical processes. Some typical use cases include payment platforms,

such as ATM or POS systems with Remote Key Loading (RKL) [9], Europay, Master-

Card and Visa (EMV) keys for card issuance and authorization [10], cloud applications

such as Bring Your Own Key (BYOK) to cloud environments [11, 12], HSM applica-

tion keys, e.g. Atalla, Thales, etc., keys for data protection [13], e.g. PCI DSS, GDPR

compliance, and Identification and Authentication Management Systems (IAMS)

[14,15], or X.509 certificates for PKI, web servers, IoT devices [16-18].

3 Research Methods

The previous section provided an overview of the underlying concepts of KMS. Aside

from highlighting a number of necessary characteristics, such as the presence of the

four main entities, it also raised a number of issues that do not war-rant an increased

level of security but provide other desired or supporting functionality, such as protec-

tion of the KMS infrastructure itself or improved usability and user experience.

Based on these concepts, this section proposes a three-stage process to identify, re-

duce, and comparatively analyse the existing KMS solutions. The identification stage

will involve an extensive search to highlight existing solutions. In order to reduce the

analysis task, the second stage will use a consistent set of the security attributes to in-

vestigate their impact for a typical organisation to shortlist and quantitatively assign

their importance for a unified score. Finally, the third stage will involve a combination

of feature analysis and benchmarking of the shortlisted solutions.

3.1 Literature Review

For literature review, various search queries were used to look for scientific articles and

technical documentation regarding key management systems that currently available to

handle software secrets. For searching both scientific and non-scientific search engines

were used. The keywords used to derive start set were: “encryption key management

system”, “cryptographic key management system”, “software key management sys-

tem”, “enterprise key management system”. Among the scientific papers, only a few

publications describing the KMS were found, the main part of the search results was

either on the websites of the manufacturers of this software KMS tool, or on specialized

source code sharing platform with software, such as Github.

The following inclusion and exclusion criteria were used to identify a set of KMS

for screening the results of the search:

- IC1: The KMS solution should be software based.

- IC2: The KMS solution should be currently available for download, sub-

scription or purchasing.

- IC3: There should exist description of the system, minimal documenta-

tion/specification.

- EC1: The project (e.g. on the GitHub) is apparently dead (i.e., no recent

comments, updates or support contact information).

- EC2: the KMS tool is not presented in English.

3.2 Selection Process

As previously mentioned, a large number of existing KMS products have been pro-

posed and are currently available as implemented solutions for organisations to adopt.

The search proposed in the previous section would therefore yield a large number of

results, all matching the context of a small organisation, but without considering the

actual abilities of the respective products. In order to prime the process of evaluating

them, a number of discriminating criteria are proposed in this section to derive the sys-

tems that are likely to best align to the requirements of typical small and medium or-

ganisations; these criteria are summarised below:

1. Cost. While technical capabilities are critical, small organisations are likely to face

a more pragmatic challenge in terms of affordability. This criterion may exclude

indeed more mature, complex solutions, but it will also represent the prime selection

choice for smaller organisation.

2. REST API. A KMS must be integrated with the existing IT infrastructure, interface,

and messaging, more specifically with the existing applications and users that must

be connected. Having a REST API does not guarantee a smooth interconnectivity,

but without it most organisations will perceive the integration task as a rather daunt-

ing one and may decide to opt out.

3. Perform an authentication of users and inside itself (who logged in and what actions

are performed). All access to systems is required to be authenticated, preferably us-

ing client certificates.

4. Access control policy (how, when and by whom a key is accessed). Beyond key

handling, a KMS must have the ability of authorization the subject of access using

an access control list.

5. Logging. A complete solution should not only successfully manage keys but also be

able to review and audit them against the authentication and access control list.

6. Secure communication. This is an expected criterion, as it links directly with the

strict requirement for encryption, preferably suing a prior, approved standard.

7. Local storage. This is unlikely to provide substantive performance improvements,

but it will reduce the dependency for external resources.

8. Backup. Given keys underpin the entire infrastructure, it is vital to have in place

backup mechanisms that can ensure the survivability of the keys as part of the dis-

aster management policy.

9. Scalability. The scalability challenges closely correlate with the size and complexity

of business; one typical example is the computational requirements while perform-

ing cryptographic operations as the number of keys, users and applications increase.

The aim of these criteria is to reduce the number of solutions to a manageable figure

and follow with a comparative analysis only on these systems.

3.3 Comparative analysis

The KMS tools selected in the previous step were analysed using a set of attributes.

Each attribute corresponded to a question with an assigned score, ranging from 1 point

for low-impact, to 2 points for relevant, and 3 points for critical attributes. Given the

paper focuses on the small and medium business needs, financial resources were high-

lighted as a priority and, hence, the analysis was restricted only to free-of-charge solu-

tions. Similarly, the complexity of the KMS tool installation and managing process was

also perceived as a significant issue and hence associated with a significant impact.

To measure installation and managing complexity, performance, and usability, each

key management system was integrated in a C# test application which represents unit

tests.

The complexity of the implementation was defined as the time, steps and knowledge

necessary for the complete implementation of the solution, and whether additional ac-

tions such as changing or adapting the initial source code are required. Performance

was measured based on the response time — the time it takes for retrieving a key from

the KMS’s storage — and network usage that shows amount of data that is sent over

the network when retrieving a key. Ease of use implies qualitative indicators of how

easy it is to use the system after its implementation, to monitor, read the logs, how

convenient the user interface is. In order to evaluate usability, it is necessary to conduct

a survey with physical respondents who used or currently are using the encryption key

management tools and who can help to estimate an usability, as well as pros and cons

of the solution. However, conducting a survey on each tool requires more time for re-

search and, thus, was deselected.

The list of the attributes is presented in Table 1.

Table 1. List of attributes for comparative analysis of KMS.

3 points 2 points 1 point

Secure storage
Multiple authentica-

tion methods

Is the KMS beneficial of hav-

ing unit tests in the source

code?

Audit logs Automated start

Popularity in the developer

community (based on the num-

ber of stars and watches)

Access control
Comprehensive docu-

mentation

No known vulnerabilities HSM support

High impact in the community

(low ratio of open/total issues)

Available for

commercial use

Actively maintained and devel-

oped? (based on the number of

recent commits)

Technical support for

developers

Each KMS can be evaluated by adding the scores from each attribute. If the answer

yes to the question then the points are added to the score, otherwise nothing is added.

In relation to the ratio of open/total issues, the points are added when the ratio is below

average, calculated among all the compared KMS. Similarly, the popularity points are

awarded for systems that have a number of commits higher than the average. Perfor-

mance results are evaluated with high score of 3 points each in case when values are

less than average for response time and network usage.

3.4 Experimental environment

In order to evaluate the parameters of the installation speed and performance of key

management tool, each of the five KMSs was installed on a virtual machine Ubuntu

18.04 that had characteristics with one CPU, 4096 GB RAM and 60 GB operative

memory. The physical machine for running VMs had hardware characteristics with i7-

8550U CPU and 16 GB RAM. Key management tools were configured, and had a way

to interact with test applications via REST API. The REST calls were initiated by the

console test applications in order to perform different operations as requesting a key,

storing a key, retrieving a key, authentication of the communication with the specific

KMS. The execution performance was measured during retrieving a key operation, and

was marked using BenchmarkDotNet tool [19]. Another performance metric, the net-

work usage, was measured using Process Monitor, as well as all network traffic that

was sent between the key management system and test application.

4 Results and Analysis

The comprehensive search based on the IC and EC criteria from Section 3.1 produced

a list of 58 software based key managements tools, of which 32 were open source code

and 26 were closed source.

Further assessment of key management tools was made on matching important re-

quirements for generating, storing, providing access and transmission of secrets, as de-

scribed in Section 3.2. An analysis of these requirements provides an idea of how well

key management systems may fit the needs of small and medium-sized businesses. Ta-

ble 2 and Table 3 show a general comparison of the functions of all identified KMSs

with respect to the SME requirements.

Table 2. Open source KMSs evaluation. Empty cells mean Yes.

 Free of

charge

REST

API

Auth

with cer-

tificate

Access

control

policy

Audit

logs

Secure

commu-

nication

Keys on-

premises

Ansible Vault No No No No N/A

Bastillion-io Bastillion No No

Chef Vault No No No No N/A

Cloudflare Red October No No

Codahale Sneaker No No No No

Cyberark Conjur No

Docker Biscuit No No No N/A N/A

Docker Secrets No No No

EnvKey No No No

Flix- Keeto No No N/A

FreeIPA No No

Fugue CredStash No No No N/A No

GnuPG No No

Hashicorp Vault

LatFchset Custodia No No

Lyft Confidant No No

Manifold Torus No No No No

Meltwater Secretary No No

Mozilla SOPS No No No N/A

Neat S.r.l. Kmc-Subset137 No N/A N/A N/A N/A N/A

Oleiade Trousseau No No No No N/A

OpenSSH No

OpenStack Barbican

Pinterest Knox No

Poise Citadel No No No No

PrivacyIDEA No No

Schibsted Strongbox No No No No

Shopify EJSON No No No N/A

Shyiko Kubesec No No

Square Keywhiz

T-Mobile T-Vault No

XOR Data Exchange Crypt No No

Table 3. Evaluation of closed source KMSs regarding to the requirements of small businesses.

Empty cells mean Yes.

 Free of

charge

REST

API

Auth

with cer-

tificate

Access

control

policy

Audit

logs

Secure

commu-

nication

Keys on-

premises

Amazon AWS KMS No No

Amazon AWS Secrets Man-

ager

No No

AppViewX CERT+ No N/A N/A

Bloombase KeyCastle No N/A

Chef Vault No No No No N/A

CipherCloud Key Manage-

ment

No N/A N/A N/A

Cryptomathic Crypto Key

Management System

No N/A N/A

Egnyte No N/A

Fornetix Key Orchestration No N/A N/A

Futurex Key Management

Servers

No N/A N/A N/A N/A

Gemalto Safenet Virtual

KeySecure

No No

Google Cloud KMS No No

Hancom SKM No N/A

Hytrust KeyControl No N/A

IBM Security Key Lifecycle

Manager

No N/A N/A N/A

KeyNexus Key Manage-

ment as a Service

No N/A

Kryptus KNET No N/A N/A

Microsoft Azure Key Vault No No No

Oracle Key Manager No No N/A N/A

Oracle Key Vault No No N/A

Quintessence qCrypt No N/A

SSH.com Universal SSH

KeyManager

No No N/A

Thales Vormetric Data Se-

curity Manager

No N/A

TokenEx No No N/A

Townsend Security Central-

ized Encryption KMS

No N/A

Unbound KeyControl No N/A

Zettaset Xcrypt No N/A N/A N/A

The information in Table 2 and 3 allowed selecting the systems that satisfy all the

mandatory requirements: be open source and free of charge, include a REST API for

user communication and other tools for analysis and visualization of acquired data in

real time, support user access control, be able to record audit logs that allow a timely

responses when an incident takes place, provide secure communication for key ex-

change, store keys locally cached on the client ma-chine to prevent outages if server

side is unavailable. The authentication through certificates is considered preferable but

not a requirement.

The analysis of key management systems summarised by Table 2 determined that

only six tools correspond to the requirements and are suitable for further more compre-

hensive analysis: Cyberark Conjur, Hashicorp Vault, OpenStack Barbican, Pinterest

Knox, Square Keywhiz, and T-Mobile T-Vault. Given that the T-Mobile T-Vault is an

extension of the Hashicorp Vault, it was excluded from the comparison.

Following the shortlisting, the selected five key management systems were analysed

for a set of attributes and for the complexity of implementation, discussed in Section

3.3. The analysis was based on data from the research studies [20, 21], Github reposi-

tories and technical documentation of each tool [22-27]. The comparison results are

summarised in Table 4, where the attributes are arranged in order of their weight.

Table 4. Comparison of the KMS. Empty cells mean Yes. The data was collected 2020-06-07.

 Conjur Vault Barbican Knox Keywhiz

Secure storage (3p)

Audit log (3p) No No

Access control (3p)

No known vulnerabilities (3p) No No No

Open/Total issues (3p) 27 14.1 17.3 0 27.7

Recent commits (3p) 74 158 16 6 39

Response time (ms/op.) (3p) 6.95 1.56 83.37 0.78 2.31

Network usage (kB/op.) (3p) 3.63 3.93 1.76 3.65 2.86

Multiple auth methods (2p) No No

Start automatically (2p) No

Well-written documentation (2p) No No

HSM support (2p) No No

Open for commercial use (2p)

Technical support (2p) No No

Unit tests (1p)

Popularity (1p) 422 165552 226 870 2294

Total score 29 33 25 23 20

The analysis shows that all KMSs can be easily integrated in the existing infrastruc-

ture through an API client, perform access control and logging information about client

actions and secrets, as stated during the selection criteria for the full list of KMSs. There

is a small variation, as Keywhiz and Barbican do not log information regarding the

client identity who access the resource or request the secret. In addition, all of the KMSs

could be used for commercial purposes, allow to test source code with unit tests and

support multiple secure storage backends, as databases (MySQL, PostgreSQL, etc),

cloud storages and file system.

From a safety perspective, Knox, Barbican, and Keywhiz have no published security

vulnerabilities, while Vault and Conjur had few but they are fixed and patched already

in newer versions. Knox currently has no open issues, and the ratio of open issues to

total issues for Vault and Barbican is below the mean; Conjur and Keywhiz have more

open issues than the average amongst the other KMS. The amount of commits made

over the most recent month was below the mean ratio for Knox, Keywhiz and Barbican

and above the average for Vault and Conjur.

Moving onto performance, the analysis showed that Barbican has a very high re-

sponse time during when extracting the secrets from the storage, one order of magnitude

higher than the other analysed KMSs. Vault, Knox and Keywhiz showed quite well

response time values of few seconds and Conjur had a slightly higher response time but

still below average. In terms of the generated traffic, the network usage analysis showed

that Knox, Conjur and Vault key management tools send more data over the network

than the average.

In terms of their features, there was some variation among the set. Knox, Vault sup-

port authentication using multiple different types of methods. Knox supports three auth

methods: Mutual TLS, Github Access Tokens and SPIFFE but, during the setup pro-

cess, only the Github Access is available. Vault supports Github credentials, tokens,

certificates and credentials to cloud providers. Square Keywhiz supports authentication

with password and certificates. Openstack Barbican supports using SAML, user cre-

dentials, tokens and certificates. Conjur can authenticate using account ID and API key,

LDAP and AWS credentials. All compared KMSs, except Vault, are able to start auto-

matically using a command at server boot up. Vault requires unlocking of the server

using a set of keys. Conjur, Vault and Barbican support HSM as a storage backend, and

Knox and Keywhiz do not support HSM.

Almost all KMSs have well-written documentation, with thorough explanations of

the features, configurations and various functionalities. However, Knox lacks the tech-

nical details on how to use the provided API, and Keywhiz only explains how to use

the tool in the development mode but lack guidelines for making it production ready. It

has also broken external links. Barbican lacks a logical structure that makes it difficult

to find a right section. Installation complexity analysis showed that during installation

the Knox source code requires a lot of editing to finally operate correctly. Vault, Key-

whiz, Barbican and Conjur are relatively easy to install, through configuration files and

running commands. Pinterest Knox and Keywhiz do not provide any technical support

while Vault and Barbican offer it through the open IRC channel. Finally, from the per-

spective of popularity, Barbican, Knox and Conjur scored lower than Vault and Key-

whiz, which are significantly higher in terms of ranking amongst similar applications.

Altogether, the analysis showed that Hashicorp Vault has the highest final score,

while Square Keywhiz got the lowest score among key management tools.

5 Discussion and Conclusions

Based on an extensive search, a comprehensive list of key management systems was

identified as viable KMS alternatives for small business. Totally, out of 58 tools, 32

were open source and 26 were closed source. Open source KMSs varied in terms of

complexity: from tools for in-house usage, like Pinterest Knox, to KMSs that are part

of company business plans, like Hachicorp Vault. A similar variation of complexity can

also be seen in the closed sourced KMSs, with some are available as a service, such as

Amazon AWS KMS or Microsoft Azure Key Vault, and others being hosted locally,

such as Thales Vormetric Data Security Manager.

Each organisation does have a specific set of KMS requirements, but in the paper

we proposed a common set likely to be specific for all SMEs. First of all, the chosen

level of logging favours traceability over performance and disk usage, to make sure that

all actions can be traced back to a user. Secondly, the communication between clients

and the KMS needs to be secure to prevent leakage due to snooping. Next, for usability,

the preference is for the KMS were to start automatically on boot, since such a KMS

would have a less negative impact on its clients during an unplanned reboot. Finally,

the security policy also states that the keys and secrets should be on the premises be-

cause utilising key management as a service from third-parties requires trust in the ser-

vice provider; this can bring usability advantages but may weaken the confidence.

For more detailed analysis of selected five key management tools the qualitative

attributes were defined. Among them there were the quality of installation guides, pop-

ularity of tool among community, implementation and usage simplicity, availability of

technical support, and the variety of authentication methods.

The evaluation concluded that Hachicorp Vault scored highest as it is equipped with

well-written documentation and educational guides, and due to the wide range of au-

thentication methods and storage backends that it includes, which makes it suitable for

multiple different businesses. For best practice, Hachicorp Vault should be configured

and installed with its own storage backend, named Consul, on physical machines with

restricted access. Further, Hachicorp Vault should only communicate securely using

TLS; the machines, Vault, and other running services should be actively updated to

mitigate unauthorized access. Compared to the other KMSs, Vault sends more data than

average during key exchange because it includes more metadata.

One major reason for the success of Vault was its business model. Hachicorp offers

Vault based on a freemium business model, where the entry model of the version is free

and additional tiers costs. This means that Vault can be extended in the paid version,

for example, should HSM support be required.

The results of the paper can be used by small businesses as a guideline of how to

perform an evaluation themselves. The results can also be used either partly or fully by

a small company if their requirements of a KMS are partly or completely equal to the

requirements outlined in this study.

As part of future work, commercial, closed-sourced KMSs should be investigated,

in order to get a better understanding of the differences (if any) between paid and free

of charge KMS, and thus deciding if they justify the cost. Another way of extended

study is evaluating more systems that give a broader perspective of the use cases and

limitations from various KMSs. It would also provide a better comparison for selected

attributes. Moreover, the attributes applied could also be extended and include post in-

stallation comparison as how easy a system can be updated, backed up and restored.

Acknowledgement

This project has received funding from the European Union Horizon 2020 re-

search and innovation programme under grant agreement no. 786698 and no.
833673. This work reflects authors view and Agency is not responsible for any

use that may be made of the information it contains.

References

1. 2020 Global Encryption Trends Study. Ponemon Institute Research Report (2020)

2. Sinha, V. S., et al.: Detecting and mitigating secret-key leaks in source code repositories. In:

12th Working Conference on Mining Software Repositories (MSR), pp. 396–400.

IEEE/ACM, Florence (2015)

3. Björkqvist, M. et al.: Design and Implementation of a Key-Lifecycle Management System.

In: Sion R. (eds) Financial Cryptography and Data Security. FC 2010. Lecture Notes in

Computer Science, vol 6052. Springer, Berlin, Heidelberg (2010)

4. Selecting the right key management system. Cryptomathic White Paper (2019)

5. Attridge, J.: An Overview of Hardware Security Modules. SANS Institute. Information Se-

curity Reading Room (2002)

6. Biggs, A., Cooley, S.: Management Service Architecture, IETF Internet draft (2015)

7. Mogull, R: Understanding and Selecting a Key Management Solution. Securosis LLC (2013)

8. Allen, C.: Exploring the Lifecycle of a Cryptographic Key (2018). https://www.crypto-

mathic.com/news-events/blog/exploring-the-lifecycle-of-a-cryptographic-key-. Last ac-

cessed 17 June 2020

9. Cryptera. Understanding Remote Key Loading, https://www.cryptera.com/wp-content/up-

loads/2014/07/Cryptera_WP_Understanding-RKL_To-Launch.pdf. Last accessed 10 June

2020

10. EMV Key Management. Cryptomathic White Paper (2017)

11. Kumar, V., Sharma, I.: Bring-your-own-encryption: How far are we? In: 11th International

Conference on Industrial and Information Systems (ICIIS), pp. 672-677, Roorkee, (2016)

12. AlBelooshi, B., Damiani, E., Salah, K., and Martin, T.: Securing cryptographic keys in the

cloud: A survey. IEEE Cloud Computing 3(4), 42–56 (2016)

13. Mogull, R: Pragmatic Key Management for Data Encryption. Securosis, LLC (2012)

14. Kuzminykh, I., Fliustikova, M.: Mechanisms of ensuring security in Keystone service. Prob-

lems of Telecommunication 2(25), 78-96 (2019)

15. Sitaram, D., Harwalkar, S., Simha, U., Iyer, S., and Jha, S.: Standards based integration of

advanced key management capabilities with openstack. In: IEEE International Conference

on Cloud Computing in Emerging Markets (CCEM), pp. 98–103. IEEE, Bangalore (2015)

16. White, C., Edwards, S.: Server-client PKI for applied key management system and process.

US Patent US10560440B2 (2020)

17. Kuzminykh, I., Yevdokymenko, M., Sokolov, V.: Encryption Algorithms in IoT: Security

vs Lifetime. Data-Centric Business and Applications. LNDECT. Springer, Cham (2021)

18. Kuzminykh. I., Carlsson A.: Analysis of Assets for Threat Risk Model in Avatar-Oriented

IoT Architecture. NEW2AN/ruSMART 2018. LNCS, vol 11118, Springer, Cham (2018)

19. BenchmarkDotNet. Frequently asked questions. https://benchmarkdotnet.org/arti-

cles/faq.html. Last accessed 10 June 2020

20. Dooley, R., Edmonds, A., Hancock, DY., et al.: Security best practices for academic cloud

service providers. Technical report (2018)

21. Topper, J.: Compliance is not security. Computer Fraud & Security, 2018(3), 5–8 (2018)

22. Hashicorp. High Availability. https://www.vaultproject.io/docs/internals/high-availabil-

ity.html. Last accessed 17 June 2020

23. Hashicorp. Production hardening. https://learn.hashicorp.com/vault/operations/production-

hardening. Last accessed 17 June 2020

24. Openstack. Barbican Documentation. https://docs.openstack.org/barbican/latest/. Last ac-

cessed 17 June 2020

25. Pinterest. Knox Wiki. https://github.com/pinterest/knox/wiki/. Last accessed 17 June 2020

26. Square. Keywhiz. https://github.com/square/keywhiz. Last accessed 17 June 2020

27. Cyberark conjur automatically secures secrets used by privileged users and machine identi-

ties. https://github.com/cyberark/conjur. Last accessed 17 June 2020

