ESCAPADE: Encryption-type-ransomware:
System Call based Pattern Detection

Christopher Chew Jun Wen! [0000-0003—2149—-2641]
Vimal Kumar![0000—0002—4955—3058]

)
2[0000—0002—1366—9411
Panos Patros?! I
obi Mali
Robi Malik?

! Department of Computer Science, University of Waikato
2 Department of Software Engineering, University of Waikato
Hamilton, Aotearoa New Zealand
cc2460@students.waikato.ac.nz, vimal.kumar@waikato.ac.nz
panos.patros@waikato.ac.nz, robi@waikato.ac.nz

Abstract. Encryption-type ransomware has risen in prominence lately
as the go-to malware for threat actors aiming to compromise Android de-
vices. In this paper, we present a ransomware detection technique based
on behaviours observed in the system calls performed by the malware.
We identify and present some common high-level system call behavioural
patterns targeted at encryption-type ransomware and evaluate these pat-
terns. We further present our repeatable and extensible methodology for
extracting the system call log and patterns.

Keywords: Android - Behaviour - Patterns - Encryption-ransomware

1 Introduction

As mobile phones become more pervasive and entangled in our lives, we amass
more and more private information on them, such as personal photos, credit card
information, contacts, and private messages. As a result of this, mobile phones
have become more or less a portable identification card in the modern day. This
obviously makes them a target of malware attacks.

One of the more frequent types of attacks on mobile are ransomware at-
tacks. As noted by SecureList’s 2019 Mobile malware evolution report [6], there
were a total of 60,176 installed ransomware packages on mobile devices in 2018
and the number went up to 68,362 in 2019. Additionally, malware authors em-
ploy cunning techniques to adapt, evolve and take advantage of current events.
For example, CovidLocker [40, 23], a locker-type ransomware variant poses as
a Covid tracking application to lure people into downloading and installing it.
At times, the evolution results into completely different types of malware. For
example, Black Rose Lucy [17,30] which was originally an information-stealing
malware distributed as a Service (MaaS) has now evolved to a encryption-type
ransomware variant due to its encryption capabilities.

2 C. Chew et al.

The effects of ransomware are widespread, posing a threat to both consumers
and organisations. In June 2019, there were 1,625,351 consumers targeted by
ransomware [29]. For businesses, ransomware is even more destructive. According
to Sophos The State of Ransomware 2020 report [43], 82% of the organisations
surveyed in India were affected by ransomware in 2019. Ransomware heavily
impacts businesses monetarily. The report [43] further stated that an average of
$761,106 USD, globally was required to remediate the effects of an attack for an
organisation. In July, 2020, Garmin suffered a ransomware attack [1] and paid an
undisclosed ransom amount after being asked for $10 million. In another recent
ransomware attack, Blackbaud [39] also paid an undisclosed amount to secure
their data from being made public. This clearly shows that current defences are
insufficient and there is a need for better protection of users from ransomware
attacks, especially as mobile devices continue to grow in popularity.

In recent years, researchers have looked at system calls for dynamically
analysing malware as it offers a balance between user-level and kernel-level anal-
ysis. User-level analysis is often unable to capture the behaviour of more sophis-
ticated malware variants. Kernel-level offers more depth and resilience, however,
the devised approaches can often lead to a complex design, thus leading to an
over-fitted solution. Hence, our decision to focus on system calls. By using system
call-level dynamic analysis, we aim to address the following research objectives:

— RO1: Identify system call level behavioural patterns for encryp-
tion-type ransomware While there have been recent works on pattern
detection on system call logs [19, 26], none has focused on patterns produced
by specific malware types. In this paper we aim to discover a set of common
behavioural patterns for encryption-type ransomware, such as file encryption
and tampering with user files through the reliance on the system call logs.

— RO2: Evaluate the effectiveness of the behavioural patterns We also
evaluated the viability and efficacy of these patterns at detecting encryption-
type ransomware behaviours from different families, to discover the shared
common behaviour among encryption-type ransomware.

— RO3: Create and make available, a dataset of system call logs of
malware activity We believe behaviour detection using system calls can
be a useful technique for malware detection and analysis therefore we have
made our dataset available for researchers to utilise in malware research.

2 Background and Related Work

In this section, we detail the evolution and improvements of Android security and
its current state; following with an overview of different types of ransomware, and
conclude with the different types of malware analysis techniques used throughout
the years, and how our proposed approach can contribute to the existing area.

2.1 Android Security History

Since the introduction of Android—a mobile operating system—in 2008, there
have been many updates and improvements to its security. In 2012, Bouncer was

ESCAPADE 3

released in an effort to deter the upsurge of Android malware in the preceding
year [31]. Bouncer targeted pre-existing applications as well as new applications.
The approach that Bouncer took was sandboxing [28], where applications were
executed, and scanned for malware in an isolated environment on a cloud infras-
tructure; this was devoid of any access to the users’ real data.

However, individuals quickly detected the vulnerabilities of Bouncer. Oliva
Hou from Trend Micro [18] noted that researchers were able to acquire specific
details of the runtime environment, such as the duration of Bouncer’s testing
phase (which was five minutes), and the phone contents used in the simulated
environment (two photos, one contact and the Google account). These details
could easily be exploited by attackers through the use of simple obfuscation
techniques to avoid detection by Bouncer.

Bouncer was, therefore, not a sustainable security mechanism. A few years
later in May 2017, a more robust approach known as Play Protect was intro-
duced. In addition to the introduction of Play Protect, a security Application
Programming Interface (API) called SafetyNet Verify Apps was introduced in
September of the same year. This API aimed to address three key ideas: to help
further protect users from malicious applications, determine if a user’s device
is protected by Play Protect, and prompt users to enable Play Protect if it is
disabled.

2.2 Ransomware

Ransomware, a type of malware that holds the users’ data for ransom—often re-
questing monetary payment—has been one of the more prevalent malware types,
with 61,132,338 ransomware related threats detected in 2019, which was a visi-
ble increase compared to 55,470,005 in 2018 [32]. In addition to its prevalence,
newer variants and iterations have appeared throughout the years adopting more
sophisticated techniques, such as self-propagation, stronger encryption, and al-
ternative infection vectors [37, 36].

With the growing numbers of mobile devices, ransomware, such as Wan-
naLocker, SimpleLocker, Filecoder, and Black Rose Lucy [17,30], have found
their way into the mobile ecosystem. Ransomware are generally of two types:
locker ransomware and encryption ransomware [33]. Locker-type ransomware
traditionally displays a persistent screen that prevents the user from interact-
ing with the rest of the system. This screen will often display the ransom note
demanding monetary payment. On mobile devices, specifically Android, locker-
type ransomware makes the application persistent by displaying a perpetual alert
dialog or activity, or disabling interactions with the navigation bar [3]. Another
technique used is altering users’ lock screens, thus preventing access to their
devices [2, 20].

Encryption-type ransomware are more destructive where the user’s files are
encrypted to prevent the user from accessing any of their data [21,2]. Similar
to locker-type ransomware, a ransom note is often displayed after the encryp-
tion phase has been completed. Typically for encryption-type ransomware, the
process begins by scanning the user’s personal directories, such as Documents,

4 C. Chew et al.

and Pictures for files. Once the scanning phase has completed, the ransomware
often identifies files containing specific extensions, such as, .docz, .png, and .jpg
to encrypt. This method is normally used to speed up the encryption process,
and efficiently determine the important user files to encrypt (i.e., the files most
important to a user) [13]. For the encryption process, the data of the identified
files are read, and written to a new encrypted file with an unknown file extension.
The original file is then removed or overwritten [7].

2.3 Static Analysis

In static analysis, a malware analyst, observes the code of the given applica-
tion and tries to determine if it is malicious or benign, and gains insight on its
functionality without the necessity of executing the application. Static Analy-
sis, however, has limited effectiveness when more sophisticated malware utilises
advanced techniques, such as binary/code/control flow obfuscation, and poly-
morphic coding [12,34,9] to avoid detection.

AndroSimilar [10] and DroidMoss [47] adopted the idea of fuzzy hashing
which compared similarities between the signatures generated. This produced a
percentage of similarity with 100% being an exact match. This approach aimed
to counteract the issue of code obfuscation and application repacking. However,
AndroSimilar [10] produced high false negative rates (28%) when detecting un-
known malware and considerably higher false negatives for the various methods
of code obfuscation which consisted of method renaming (45%), junk method
insertion (44%), goto obfuscation (43%), and string encryption (24%). Droid-
Moss’s false negative rates were lower (10.7%). All the tested applications how-
ever, came from third-party app stores, whereas AndroSimiliar focused on both
official Play store and third-party app stores.

2.4 Dynamic Analysis

In dynamic analysis, rather than observing the code, malicious applications are
directly executed in an isolated environment and observed over time for malicious
behaviour. This mitigates the core limitations of static analysis. Obfuscation is
not an issue as dynamic analysis only observes the behaviour of the application
at run-time. As a result of this, dynamic analysis is also capable of discovering
new malware.

One of the dynamic analysis technique used is taint analysis, a method of
observing data flow and tainting sensitive data paths that could potentially be
used maliciously. TaintDroid [8] utilised this approach along with variable-level
tracking of native methods within the Dalvik VM interpreter, which contained
taint markings in a taint map. These taint markings were propagated through the
Android Inter-Process Communication Binder, based on the defined data flow
rules on how the application used the tainted data, to the untrusted application’s
taint map. If the untrusted application made a library call deemed as a taint
sink (e.g., network send), then the application was marked as malicious.

ESCAPADE 5

In contrast, under our method of detection, we observe high-level behavioural
patterns at a system call-level with each pattern classified in different levels of
severity. This allows for more precise details regarding an application’s behaviour
and more flexibility with our detection model.

One of the dynamic technique is pattern detection at a system call level,
which has often been used for kernel-level malware analysis. Works in [44, 26,
19] apply system call analysis on mobile operating systems such as Android.
This approach is useful because system calls are able to determine the precise
operations that occurred during the execution of an application/program, which
can help identify malicious activities or behaviours.

One drawback, however, with system call monitoring is the size of the log
files generated. Due to background processes—such as clock_gettime() that
periodically record the system clock time—occurring in parallel with the core
operations, the raw log size created from monitoring an application, is large.

Isohara et.al. [19] addressed this issue by filtering out unnecessary system
calls. They achieved this by grouping system calls into specific categories and
filtered processes unrelated to the application through the use of a process tree.
For their detection phase, Isohara et.al. created 16 different patterns represented
as regular expressions. These regular expressions utilised assistant keywords,
which relate to specific strings such as, file paths or commands such as su.

The work of Isohara provides a good insight into pattern detection in sys-
tem call logs using regular expressions. Our proposed approach improves on this
notion by introducing a formalised and reproducible methodology for safely col-
lecting and extracting system call logs from Android applications. This method-
ology allows us to create a comprehensive dataset that will enable researchers
to better analyse encryption-type ransomware, devise new behavioural patterns,
and evaluate the efficacy of their own approaches. Furthermore, our approach
focuses on the concept of extensibility where we adopt a customisable multi-level
filtering process to allow the abstraction of information within the system call
logs. This creates a more human readable log thus making it easier for analyses.
In addition to the multi-level filtering, we utilise a token-based approach for our
patterns where each token is represented as a smaller sub-pattern.

SCSDroid [26] is a thread-grained behavioural pattern detection method on
the system call level leveraging the Longest Common Subsequence (LCS) al-
gorithm to extract potentially malicious patterns from system calls. The Bayes
theorem is then utilised with these patterns to determine if an application was
a Maliciously Repackaged Application (MRA) or a benign application.

The proposed approach of SCSDroid gives a good perspective of the viability
of pattern detection used in malware detection. However, as noted in their con-
clusion, one of the limitations is its inability to detect unknown families that have
not been acquired (i.e., trained). In comparison, in our approach, we develop be-
havioural patterns to match high-level common behaviour based on a range of
ransomware families. This allows us to capture a broader range of behavioural
patterns as opposed to family-specific patterns. Furthermore, we demonstrate

6 C. Chew et al.

a reproducible experimental testbed for identify malicious patterns on Android
applications.

3 Methodology

Phase 1: Observation
phase Raw System Manual User
Malicious Call Log Observation
Application I
Sandbox
Non-Malicious [| ’))
Regular Dataset of formatted
Expressions system call logs and
detected patterns
Filtering

Environment
Application
N N N
Tok

ens

Raw System
Phase 2: Call Log

Evaluation

Formatting

1
Formatted
System Call Pattern Matching
Logs

Fig. 1. Methodology process overview

Figure 1 provides an overview of the process followed in this work. The
sandbox environment component is our run-time environment where applications
are examined; this environment is described in more detail in section 3.1. The
output of the sandbox environment splits into two phases. The first phase is the
observation phase where applications are observed for their behaviour during
runtime. After which, regular expressions are created based on the benign and
malicious behaviours observed during that phase. These regular expressions are
then converted into our token representation for pattern matching.

These tokens are used in our second phase, labelled as Evaluation. This phase
starts with the extraction of the raw system call logs (similar to the observation
phase), then applies multiple layers of filtering to abstract and remove repetitive
or unrelated system calls. After which, the filtered log is formatted for pattern
matching using our created tokens. This process is repeated for all unique vari-
ants containing a unique hash—also known as a sample—resulting into the final
dataset, which contains the formatted system call logs and detected patterns.

The following subsections extensively describe our methodology of collecting
and formatting system call logs for detection of malware in more detail. The
methodology proposed enables researchers to utilise a streamlined and repro-
ducible approach to safely extract system call logs for effective pattern-based
malware detection.

ESCAPADE 7

3.1 System Call Log Collection

The first part of our approach is the collection of system call logs. To achieve this,
we devised an automatic process of installing applications and tracing system
call logs. The environment we used was a Google Pixel 2 emulator running API
level 24, created from Android Studio. To automate the process of installing ap-
plications and starting applications, we used Android Debug Bridge [15] (ADB)
and Android Monkey [16], a program used for generating events on an applica-
tion. To acquire the system call logs, we ran Strace [25], a command line tool
originally utilised in Linux, to extract and capture the system calls from each
application during runtime. The parent process (Zygote) was traced to ensure
we capture all behaviours produced by the applications.

During the observation phase, we noticed that Android ransomware often
prompts for admin privileges. Hence, we automatically accepted the requested
permissions for each application. Additionally, to simulate a real-user experience,
we used Android Monkey to insert events periodically during the application’s
runtime. This is described in more detail in section 3.2.

3.2 Detection of Behavioural Patterns

To acquire a set of high-level common behavioural patterns for encryption-type
ransomware, we conducted an evaluation with 10 encryption-type ransomware
samples from five families obtained from CICAndMal2017 [24] and Koodous [22].
Each application was executed 10 times and manually observed during runtime
to comprehensively acquire their malicious behaviour. Additionally, 10 benign
samples were also analysed to observe the differences in behaviour.

The five ransomware families used for our pattern observation phase consisted
of: WannaLocker, DoubleLocker, SimpleLocker, Filecoder, and Wipelocker. All
samples were evaluated from each of these families to acquire our common high-
level behaviours. The samples used within our pattern observations phase are
excluded from our dataset of malicious applications to avoid any potential bias
within our evaluation phase in Section 4. During the observation phase, we were
able to discover 12 behavioural patterns. We classified the behavioural patterns
in three categories, five of these patterns are classified as Malicious, four are
classified as Suspicious, and three are General behavioural patterns.

Table 3 in the appendix shows the 12 patterns we identified and created.
Within this table, the use of > is to concatenate each token. Additionally, Table 2
in the appendix provides each token’s objective.

3.3 Pattern Acquisition and Classification

Our method of acquiring the patterns was based on our deduction in the obser-
vation phase. This was achieved by going through each application and identify-
ing malicious (or potentially malicious) behaviour and its respective high-level
system call counterpart via the captured log. For example, if an application en-
crypted the user’s files then the high-level behaviour at a system call level would

8 C. Chew et al.

translate to openat - open user file, one or multiple read system calls, openat
- create new encrypted file, one or multiple write system calls.

We aim to observe common high-level behavioural patterns specifically fo-
cusing on encryption-type ransomware. However, not all captured behavioural
patterns correlate to malicious behaviour.

For example, consider the creation of a socket to connect to an external URL
to transfer specific resources. This type of behaviour occurs in both benign and
malicious applications. However, the usage will differ. A malicious application
often uses that connection to contact a Command and Control (C&C) server [38]
to download the payload, whereas a benign application would use the connec-
tion to download resources; often occurring in applications requiring frequent
updates, such as online mobile games, or linking accounts such as social me-
dia accounts. Therefore, to aid in distinguishing the behaviour of patterns, we
created a classification to better represent the patterns detected.

Patterns in the Malicious category are explicitly classified as malicious be-
haviours. Applications that contain Malicious patterns contain malicious seg-
ments that resemble behaviour of encryption-type ransomware.

Behavioural patterns classified in the Suspicious category are deemed as
potentially malicious. These types of patterns can lead to malicious behaviour.
However, the behaviour by itself does not indicate any malice.

Patterns in the General category are common benign behaviours that exist
in malicious and benign applications with low indication of malicious behaviour.

Note: Suspicious and General patterns are not used in our evaluations
for this paper. These patterns were primarily identified and created to aid fu-
ture detection systems that utilise common high-level behaviour. Furthermore,
encryption-type ransomware exhibits distinct malicious behavioural patterns un-
like other types of malware, such as Adware and Trojans, where the malicious
behaviours are not always immediately evident. The inclusion of these two pat-
tern categories will be more beneficial in those types of malware.

Malicious Patterns Our first malicious pattern observed from the logs was
related to file renaming and unlinking within the user’s main directory (Rename
& Unlink F'ile). This behaviour was observed in the WannalL.ocker /Slocker sam-
ple, which renamed the initial encrypted file using an unknown file extension.
Once the file extension has changed, the ransomware proceeded to unlink the
user’s original file that was related to the encrypted file. We only looked for this
pattern in files within the user directory or external directory (SDcard) as these
directories are the points of interest for encryption-type ransomware due to the
importance of the files residing within them (often important to the users, such
as photos, notes, and other important documents, but not required for the sys-
tem to work) [41]. Additionally, during our observation phase, the folder Android
was also within the user directory. Hence, we added an additional condition to
exclude that specific directory. The main system call sequences observed, began
with renameat, followed by an fstat, which always occurred before an unlinkat
operation.

ESCAPADE 9

The next malicious pattern from our observations was unlinking of users’ files.
From our analysis, we were able to find consistent occurrences of this pattern
in the ransomware samples and there were no traces of this pattern occurring
in the 10 benign samples during our observation phase. The sequence for this
pattern began with an unlinkat system call followed by the location of the user
directory, and the type of file removed.

Another malicious behavioural pattern discovered was the creation of files
with unknown file extensions within the user’s main directory (Unknown File Ext
Created). From the different samples observed, this was a prevalent behaviour for
encryption-type ransomware where a new file was created to hold the encrypted
data of the original user’s file. This encrypted file was in a nonstandard file
extension and the file name consisted of the original file’s name including its
original file extension. The main sequence of tokens for this pattern started with
an openat system call followed by the user directory token, then searched for
any files created not matching a regular file extension type.

The last two common malicious patterns discovered were reading of user files
and writing to a file with an unknown file extension. These two behavioural
patterns represented the encryption segment of a encryption-type ransomware.
This was a common behaviour that occurred in all of our ransomware logs.

The first pattern that represents the encryption component is Read User File.
This pattern focuses on capturing the behaviour of applications reading three
times from a file within the user directory. From our observation phase, some of
the malicious variants observed read the contents of files within the user directory
over multiple read operations in a specific block size, unlike the benign samples,
which read the file contents in one single block. Hence, the inclusion of three
read operations; this is to filter out apparent benign applications. The sequence
of this pattern begins with an openat system call followed by the location of the
user directory then three read operations.

The second pattern of the encryption component is Write File Unknown
Ezxtension. This pattern observed the behaviour of applications writing data
to a newly created file with an unknown file extension. This pattern, together
with Read User File, represented the encryption behaviour seen from the various
encryption-type ransomware in our observation phase. The sequence of tokens for
this pattern starts with an openat system call with the user directory specified,
followed by a file created with an unknown file extension and a write operation.

Suspicious Patterns The first suspicious pattern we noted was applications
making connections to an external IPv4 address. This could mean the mali-
cious app making connection to a C&C server, however, this can also just be a
non-malicious app connecting to the outside internet. We, therefore classified as
suspicious but not malicious. The sequence of this pattern observes any connect
system call followed by an IPv4 address.

Another suspicious behavioural pattern was directory searching. This be-
haviour is traditionally exhibited by encryption-type ransomware, which searches
for user files within the device to encrypt. However, this behaviour does not in-

10 C. Chew et al.

herently signify malicious behaviour as there are benign applications that can
exhibit the same behaviour, such as cache-cleaning applications. The sequence
consists of an openat system call and a directory name, then a sequence of
getdents64 (system call for getting directory entries), ending with a close.

The next notable suspicious pattern discovered in some ransomware samples,
was the creation of an obfuscated file. This file had no file extension and the
content contained an external URL. Similar to the first suspicious pattern, we
were unable to validate the legitimacy of the URL address. However, many of
the ransomware logs observed, contained URL addresses that were related to
C&C servers. The sequence of tokens for this pattern comprised an openat
system call, then any obfuscated file name with no file extension, followed by a
pwrite64 operation with the contents matching any URL address.

The last suspicious pattern was the acquisition of network information via
getaddrinfo. From our observations, the majority of the ransomware logs at-
tempted to acquire network information, such as socket addresses, and socket
types from unknown domains via getaddrinfo. However, this does not necessar-
ily indicate malice as we discovered legitimate trusted domains in benign appli-
cations such as, googleadservices. This pattern began by matching a socket
system call followed by the subsequent sequence of system calls: setsockopt,
connect, fnctl64, fstat64, and concluding with a match for a URL address.

General Patterns There are three patterns in the General category. These
patterns consist of simple file I/O operations, read and write file behaviour, and
generic file unlinking (targets known file extensions in any directory location),
such as temporary files (.tmp, _tmp), backup files (.bak), or File locks (.flock).

The patterns in the General category aim to provide more detailed informa-
tion regarding an application’s behaviour regardless of whether the application
is malicious or benign.

For File Read, and File Write, the sequence started with an openat system
call, then a read/write operation. The last pattern Generic File Unlink matches
any unlinkat system call with any file matching .flock, .xml, .bak, or .db-wal.

Our first research objective was to identify common high-level behavioural
patterns for encryption-type ransomware at a system call level. To satisfy this re-
quirement, we identified 12 different behavioural patterns, represented as tokens,
and categorised them into different severity levels based on our observations. By
utilising these patterns with our methodology for collecting and extracting sys-
tem calls, we were able to devise a novel meta language for detecting malicious
encryption-type ransomware behavioural patterns. This approach presents an
easily reproducible testbed for researchers to evaluate potentially malicious ap-
plications, and create behavioural patterns based on system call logs.

4 Evaluation

This section details the method of evaluation used for our proposed method,
which includes our testing environment, dataset acquisition, evaluation method,

ESCAPADE 11

evaluation of detected patterns identified in a set of encryption-type ransomware
and benign applications. These evaluations are conducted to identify shared
commonalities that exists between different encryption-type ransomware families
as well as assessing the viability against a benign set of applications. Thus,
validating our second research objective.

4.1 Dataset Acquisition

To acquire our dataset of encryption-type ransomware samples, we retrieved
the hash or package name publicised from established anti-virus vendors, such
as Avast [5] and ESET [46], and relevant search tags, such as family name
from Koodous [22]; then we manually verified each malicious application against
VirusTotal [42] before downloading the APK from Koodous [22].

As our focus was encryption-type Android ransomware, it was difficult to
acquire a large sample size due to the distinctive category. However, we man-
aged to acquire 500 distinct samples to assess our behavioural patterns. Out
of that sample size, 213 applications exhibited encryption-type ransomware be-
haviours. Applications that did not encrypt our files were manually re-evaluated
to thoroughly examine the potential cause of failure. From the re-evaluation, we
discovered 18 samples that required manual interaction to enable the encryption
component. These 18 samples were included in the 213 malicious samples.

From our observations via manual reevaluation, we noticed several factors
that caused the failure of encryption. This was likely due to some of the samples
requiring a connection to a C&C server that was no longer active. Additionally,
some of the applications were installed and crashed upon start-up; thus, prevent-
ing the malicious code from executing. Furthermore, there were applications that
failed to install on the emulator due to issues, such as a missing manifest file.

As part of our contribution in this paper, we produced a dataset of system
call logs collected from our evaluation of 213 encryption-type ransomware and
made it publicly available online3. This can also enable other works surrounding
system call pattern detection to evaluate their own approaches, or expand and
develop new behavioural patterns from their own observations.

Alongside our malicious dataset of encryption-type ransomware, we acquired
502 benign applications from APKPure [4] to evaluate the efficacy of our ap-
proach. Two of these samples were cache cleaning applications. These two spe-
cial samples were included as these types of applications closely resembled the
high-level behaviours of encryption-type ransomware, specifically the behaviour
of removing user files. These two applications were tested separately with manual
interaction to ensure we captured the cleaning process.

4.2 Evaluation Method

We ran each application for two minutes using our automation script. Once all
the system calls were extracted, we put them through our detection program, and
calculated the number of all detected patterns for the different severity levels.

3 https://crow.org.nz/tools/ransomwaresystemcalldataset

12 C. Chew et al.

For our ransomware dataset, we identified different malicious patterns for
all six ransomware families. Any application whose log contained a match for
at least one malicious pattern was classified as malicious. Any falsely identified
malicious patterns were noted within this evaluation.

4.3 Detected Patterns

Overview of detected patterns
100%

90%
80%
70%
60%

50%

40%

30%

20%

10%
0%

WannaLocker SimpleLocker WipeLocker Pletor Filecoder Black Rose Lucy
Unlinking user files Files created with unknown extensions
= Reading of user files 1l Writing to unknown file extensions

Fig. 2. Overall results of each detected pattern

This section details our evaluation of the six different encryption-type ran-
somware families. Figure 2 illustrates the results of our evaluation for the mali-
cious dataset. The following paragraphs provides a thorough elaboration of each
family and their discovered patterns.

‘WannaLocker: For Wannal.ocker we acquired 51 samples; from these 51 sam-
ples, we detected 850 malicious patterns. Unlinking User Files and Read User
File were detected 211 times each, Write File Unknown Fxtension was detected
162 times, and 266 patterns were Unknown File Ext Created.

SimpleLocker: We acquired 64 encryption-type ransomware samples of Sim-
pleLocker, and out of these 64 samples, we were able to discover 1280 malicious
patterns. Within the 1280, we detected an even split of 320 Unlinking User Files,
Unknown File Ext Created, Read User File, and Write File Unknown Extension.
However, we were unable to detect any Rename €& Unlink File as this behaviour
did not occur in any of the samples.

WipeLocker: For WipeLocker, 70 samples were acquired for evaluation. All
70 samples detected 5 Unlinking User Files with no other malicious patterns
detected. This led to a total of 350 malicious patterns detected. Although Wipe-
Locker did not indicate any behaviour of file encryption (even after re-evaluating

ESCAPADE 13

the applications manually), the attributes this family exhibited were similar to
encryption-type ransomware such as, the detected pattern of unlinking user files,
and directory searching (a suspicious pattern, which we were able to detect a to-
tal of 733 occurrences); hence, the inclusion of this family within our evaluation.
Pletor: We were able to acquire six samples from Pletor and from those six
samples, a total of 120 malicious patterns were discovered; with even split of 30
between Unlinking User Files, Read User File, and Write File Unknown Exten-
ston.

FileCoder: For Filecoder, we were only able to acquire five samples. However,
out of these five samples, we were able to discover 95 malicious samples. From
those 95 patterns, Unlinking User Files and Write File Unknown Eztension were
split evenly with 25 total detected samples each, whilst the remaining 20 were
classified as Read User File.

Black Rose Lucy: For Black Rose Lucy, we acquired 17 samples for our eval-
uation. Out of these 17 samples, 307 malicious patterns were detected. Out of
these, we identified 45 instances of Unlinking User Files, 95 Unknown File Fxt
Created, 72 Read User File, and 95 Write File Unknown FExtension.

Unlike other encryption-type ransomware, we noticed that Black Rose Lucy
specifically targeted the user’s external storage directory (/sdcard/) rather than
the user’s internal directory during our evaluation. Additionally, we required
manual interaction with each of the samples as Android Monkey was unable to
detect the package name of the application.

One of the research objective was to evaluate the viability of the devised
patterns for behavioural pattern detection against a set of encryption-type ran-
somware. Within our evaluation we were unable to discover any patterns for Re-
name & Unlink File as this behaviour was likely tied to a specific variant of Wan-
nal.ocker or SimpleLocker. However, from the overall results of our evaluation,
seen in Figure 2, there is clear indication of shared common behaviour among
encryption-type ransomware regardless of the family, with the only exception
of WipeLocker, which is known to only remove user files. Through the patterns
detected and shared commonalities identified, we have validated the viability of
these common high-level behavioural patterns for detection of encryption-type
ransomware. This further reinforces the conclusion of the first research objective.

4.4 Benign Applications Results

Table 1 contains a summary of our results where we evaluated the efficacy of our
patterns on our benign dataset. The Percentage column provides the percentages
of true negatives and false positives detected for all benign samples evaluated.
The Sample Size column denotes the numerical value of true negatives and false
positive samples detected.

To evaluate the efficacy and viability of our patterns, we tested our approach
on a dataset consisting of 502 benign applications. Two of those are the cache-
cleaning applications discussed separately below. Out of the other 500 benign
applications, we encountered six falsely classified applications. This was due to

14 C. Chew et al.

Table 1. Summary of all benign applications evaluated

Benign Samples | Percentage | Sample Size
True Negative 98.6% 495
False Positive 1.4% 7

a mismatch of four different patterns, specifically, Unlinking User Files, Read
User File, Unknown File Ext Created, and Write File Unknown Extension.

For our pattern matching results, two applications incorrectly matched Read
User File; this was due to the applications creating and reading application
related files within the user directory, such as dslv_state.txt. To mitigate this
issue, openat system calls with the flag 0_CREAT could be excluded. This would
ensure that only user created files were captured within this pattern.

The third benign application that was falsely classified incorrectly matched
the patterns Unlinking User Files and Read User File, due to the application
creating and utilising temporary files within the user directory. This was one of
the drawbacks of capturing high-level behaviour. For most cases, these patterns
would capture unlinking of user created files and existing user file access and
reads, which is a behaviour often exhibited by encryption-type ransomware as
part of the file encryption process. However, in the case of an application cre-
ating and utilising a file within the user directory, it would be classified as a
false positive. A potential solution is to exclude files created by the application
within the user directory, as previously suggested, or reduce and combine the
behavioural patterns related to file encryption.

The last three benign applications falsely classified were incorrectly matching
two behavioural patterns: Unknown File Ext Created and Write File Unknown
Eztension. These patterns were falsely classified due to the applications creating
an application folder within the user directory and a file with an unknown file
extension within the application folder.

Similar to the proposed solution for the aforementioned third application,
combining behavioural patterns related to file encryption could provide a more
accurate representation. Alternatively, the pattern could be altered to only check
for primary directories (i.e., directories not created by the application), such as
Photos, Documents, and Downloads.

Cache Cleaning Applications For the two cache cleaning applications, one
of them resulted in a false positive. There were four total malicious patterns
matched and all four of those patterns were linked to Read User File.

From the examination of the patterns file and system call log file, these
four patterns were deemed as irregular behaviour as it was unusual for a benign
application to be reading the contents of user created files (i.e., pre-existing files,
not created by the application).

ESCAPADE 15
5 Conclusions

In this paper, we identified and explored three core research objectives. The
first research objective was to identify system call level behavioural patterns for
encryption-type ransomware. To achieve this, we presented an extensive method-
ology for collecting and identifying behavioural patterns at a system call level.
Using this methodology, we were able to discover a set of common high-level
behavioural patterns at a system call level.

Our second research objective evaluates the effectiveness of the behavioural
patterns identified. This was achieved by creating 12 behavioural patterns for
detecting encryption-type ransomware. Consequently, we were able to evaluate
these patterns against a set of encryption-type ransomware to identify shared
commonalities between different families using pattern matching.

By utilising our methodology and behavioural patterns, we developed a pub-
licly available dataset of formatted system call logs of encryption-type ran-
somware, which satisfied our third research objective. This dataset was created
to contribute to the area of system call pattern detection that can be utilised in
the future for purposes, such as evaluation or discovery of additional patterns.

5.1 Discussion and Future Work

There are limitations to the work presented in this paper. One of the limitations
relates to the generation of regular expressions. Currently, we require manual
observation and interaction to create regular expressions. This process can often
be tedious and difficult. As we continue to develop our approach, we intend to
automate this process.

Another limitation is our approach of identifying behavioural patterns. The
patterns identified were based on our own observations from various applica-
tions. As a result of this, there may have been some behaviours that were not
captured. In future, we would like to introduce a more formalised and robust
methodology of identifying behavioural patterns at a system call level ensuring
that all behaviours are captured without any uncertainty.

Additionally, we intend to introduce more behavioural patterns capable of de-
tecting other types of malware, such as Backdoors and Trojans, which were iden-
tified as two of the most prominent types of infections for third-party apps [14].
This enables us to expand our dataset and evaluate the efficacy of our method-
ology on a larger sample size consisting of different types of malware.

Similar to static analysis, dynamic analysis suffers in keeping up with mal-
ware developers’ avoidance techniques. Dynamic analysis generally relies on
an isolated environment, most commonly through the use of Virtual Machines
(VMs) to observe malicious applications. However, more sophisticated malware
have processes in place to detect virtual environments [11,45]. There are sev-
eral tests that a malware may perform to check if the environment is emulated.
One of which is registry checks; whenever a virtual machine is spawned in, a
new registry entry is inserted. Another possible way how malware can detect

16 C. Chew et al.

virtual environments is by checking the MAC address as certain virtual envi-
ronment software, like VMware produces distinct MAC address prefixes for the
VM. Specifically, for VMware, the following MAC address prefix can be 00-05-
69, 00-0c-29, 00-1c-14 or 00-50-56 [35]. In practice, this holds true as the authors
of ANDRUBIS [27] identified this as one of their limitations. Similarly, Copper-
Droid [44] also noted in their related works section that DroidBox, a malware
detection tool using taint analysis, also suffers from the same issue.

The aforementioned issue highlights the inadequacy of heavily relying on con-
ventional VM-based dynamic analysis. Thus, to prevent this issue we adopted a
deeper level of analysis through the utilisation of system call log data to iden-
tify malicious behaviour. Although we evaluated our approach on an emulated
environment, our approach is still applicable as long as the system call log is
producible. As part of our future work, we are working on a system that enables
efficient capturing of system calls in real time on a real user device utilising
the technique shown in this paper. This alleviates the reliance of a virtualised
environment, which most dynamic analysis techniques utilise.

As previously mentioned in Section 3.3, Suspicious and General patterns
were not utilised in our evaluations. However, these patterns were still identified
and created to lead into future work. These patterns can be expanded to create
a more robust real-time malware detection model for Android devices or aid
current and future anti-malware applications in detecting and deterring malware.

References

1. Abrams, L.: Confirmed: Garmin received decryptor for WastedLocker
ransomware (2020), https://www.bleepingcomputer.com/news/security/
confirmed-garmin-received-decryptor-for-wastedlocker-ransomware/

2. Al-rimy, B.A.S., Maarof, M.A., Shaid, S.Z.M.: Ransomware threat success factors,
taxonomy, and countermeasures: A survey and research directions. Computers &
Security 74, 144-166 (2018)

3. Andronio, N., Zanero, S., Maggi, F.: Heldroid: Dissecting and detecting mobile ran-
somware. In: International Symposium on Recent Advances in Intrusion Detection.
pp. 382-404. Springer (2015)

4. APKPure: Benign dataset (nd), https://apkpure.com/

5. Avast: Avast blog (2020), https://blog.avast.com/

6. Chebyshev, V.: Mobile malware evolution 2018. SecureList (2019, March 16),
https://securelist.com/mobile-malware-evolution-2018/89689/statistics

7. Chen, J., Wang, C., Zhao, Z., Chen, K., Du, R., Ahn, G.J.: Uncovering the face of
Android ransomware: Characterization and real-time detection. IEEE Transactions
on Information Forensics and Security 13(5), 1286-1300 (2017)

8. Enck, W., Gilbert, P., Han, S., Tendulkar, V., Chun, B.G., Cox, L.P., Jung, J.,
McDaniel, P., Sheth, A.N.: TaintDroid: an information-flow tracking system for
realtime privacy monitoring on smartphones. ACM Transactions on Computer Sys-
tems (TOCS) 32(2), 5 (2014)

9. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M., Rajara-
jan, M.: Android security: a survey of issues, malware penetration, and defenses.
IEEE communications surveys & tutorials 17(2), 998-1022 (2014)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

ESCAPADE 17

Faruki, P., Laxmi, V., Bharmal, A., Gaur, M.S., Ganmoor, V.: AndroSimilar: Ro-
bust signature for detecting variants of Android malware. Journal of Information
Security and Applications 22, 66-80 (2015)

Gadhiya, S., Bhavsar, K.: Techniques for malware analysis. International Journal
of Advanced Research in Computer Science and Software Engineering 3(4) (2013)
Gandotra, E., Bansal, D., Sofat, S.: Malware analysis and classification: A survey.
Journal of Information Security 5(02), 56 (2014)

Gazet, A.: Comparative analysis of various ransomware virii. Journal in computer
virology 6(1), 77-90 (2010)

Google: Android security 2018 year in review (2019), https://source.android.
com/security/reports/Google_Android_Security\2018_Report_Final.pdf
Google: Android Debug Bridge (adb) (2020), https://developer.android.com/
studio/command-1line/adb

Google: Ul/application exerciser monkey (2020), https://developer.android.
com/studio/test/monkey

Goud, N., Goud, N.G., Goud, N., Goud, N., Insiders, C., Acquisi-
tions, M.., Insiders, C..: Black Rose Lucy ransomware attack on An-
droid devices (Apr 2020), https://www.cybersecurity-insiders.com/
black-rose-lucy-ransomware-attack-on-android-devices/

Hou, O.: A look at Google Bouncer [blog post] (2012, July 20),
https://blog.trendmicro.com/trendlabs-security-intelligence/
a-look-at-google-bouncer/

Isohara, T., Takemori, K., Kubota, A.: Kernel-based behavior analysis for Android
malware detection. In: 2011 Seventh International Conference on Computational
Intelligence and Security. pp. 1011-1015. IEEE (2011)

Kanwal, M., Thakur, S.: An app based on static analysis for Android ransomware.
In: 2017 International Conference on Computing, Communication and Automation
(ICCCA). pp. 813-818. IEEE (2017)

Kok, S., Abdullah, A., Jhanjhi, N., Supramaniam, M.: Ransomware, threat and
detection techniques: A review. Int. J. Computer Science and Network Security
19(2), 136 (2019)

Koodous: Malicious dataset (nd), https://koodous.com/

Lance, W.: CovidLock ransomware exploits coronavirus with malicious Android
app. TechRepublic (2020, March 17), https://www.techrepublic.com/article/
covidlock-ransomware-exploits-coronavirus-with-malicious-android-app/
Lashkari, A.H., Kadir, A.F.A., Taheri, L., Ghorbani, A.A.: Toward developing a
systematic approach to generate benchmark Android malware datasets and clas-
sification. In: 2018 International Carnahan Conference on Security Technology
(ICCST). pp. 1-7. IEEE (2018)

Levin, D.V.: Strace (2020), https://strace.io/

Lin, Y.D., Lai, Y.C., Chen, C.H., Tsai, H.C.: Identifying Android malicious repack-
aged applications by thread-grained system call sequences. computers & security
39, 340-350 (2013)

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., Van
Der Veen, V., Platzer, C.: Andrubis—1,000,000 apps later: A view on current An-
droid malware behaviors. In: 2014 third international workshop on building analy-
sis datasets and gathering experience returns for security (BADGERS). pp. 3-17.
IEEE (2014)

Lockheimer, H.: Android and security [blog post] (2012, February 2), https://
googlemobile.blogspot.com/2012/02/android-and-security.html

18

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.
47.

C. Chew et al.

Malwarebytes: CTNT report cybercrime tactics and techniques: Ransomware
retrospective (2020), https://resources.malwarebytes.com/files/2019/08/
CTNT-2019-Ransomware_August_FINAL.pdf

Mana, O., Hazum, A., Melnykov, B., Kuperman, L.: Lucy’s back: Ran-
somware goes mobile (Apr 2020), https://research.checkpoint.com/2020/
lucys-back-ransomware-goes-mobile/

Micro, T.: Behind the Android menace: Malicious apps—TrendLabs security intelli-
gence blog, https://blog.trendmicro.com/trendlabs-security-intelligence/
infographic-behind-the-android-menace-malicious—-apps

Micro, T.: The sprawling reach of complex threats (2020), https:
//www.trendmicro.com/vinfo/us/security/research-and-analysis/
threat-reports/roundup/the-sprawling-reach-of-complex-threats
Mohammad, A.H.: Ransomware evolution, growth and recommendation for detec-
tion. Modern Applied Science 14(3) (2020)

Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference (ACSAC
2007). pp. 421-430. IEEE (2007)

Ninja, S.: How malware detects virtualized environment (and its
countermeasures) (2016), https://resources.infosecinstitute.com/
how-malware-detects-virtualized-environment

O’Kane, P., Sezer, S., Carlin, D.: Evolution of ransomware. IET Networks 7(5),
321-327 (2018)

Richardson, R., North, M.M.: Ransomware: Evolution, mitigation and prevention.
International Management Review 13(1), 10 (2017)

Robert Lipovsky, Lukas Stefanko, G.B.: Labour party is latest victim of Black-
baud ransomware attack (2016), https://www.welivesecurity.com/wp-content/
uploads/2016/02/Rise_of_Android_Ransomware.pdf

Scroxton, A.: Labour party is latest victim of Blackbaud ransomware
attack (2020), https://www.computerweekly.com/news/252487002/
Labour-Party-is-latest-victim-of-Blackbaud-ransomware-attack

Shivang, D.: CovidLock: Android ransomware walkthrough and unlock-
ing routine (2020, March 16), https://www.zscaler.com/blogs/research/
covidlock-android-ransomware-walkthrough-and-unlocking-routine

Song, S., Kim, B., Lee, S.: The effective ransomware prevention technique using
process monitoring on Android platform. Mobile Information Systems 2016 (2016)
Sood, G.: virustotal: R Client for the virustotal API (2017), r package version 0.2.1
Sophos: The state of ransomware 2020 (2020), https://www.
sophos.com/en-us/medialibrary/Gated-Assets/white-papers/
sophos-the-state-of-ransomware-2020-wp.pdf

Tam, K., Khan, S.J., Fattori, A., Cavallaro, L.: CopperDroid: Automatic recon-
struction of Android malware behaviors. In: NDSS (2015)

Uppal, D., Mehra, V., Verma, V.: Basic survey on malware analysis, tools and tech-
niques. International Journal on Computational Sciences & Applications (IJCSA)
4(1), 103 (2014)

WeLiveSecurity: WeLiveSecurity (2020), https://www.welivesecurity.com/
Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applica-
tions in third-party Android marketplaces. In: Proceedings of the second ACM con-
ference on Data and Application Security and Privacy. pp. 317-326. ACM (2012)

ESCAPADE 19

6 Appendix

Listing 1.1. Filecoder match for Write To File Unknown Extension

4179;23:18:22;0penat; (AT_FDCWD, "U_DIR/large_text.txt.seven",
O_WRONLY|O_CREAT|O_TRUNC|O_LARGEFILE, 0666 <unfinished ...>

4179;23:18:22;0penat; () = 36

4179;23:18:22;fstat64; (36, <unfinished ...>

4179;23:18:22;fstat64; ({st_mode=0, st_size=1, ...}) =0

4179;23:18:22;write; (36,"\10\261{H|\254\226\32\202\342\322\222\230
\376c\256h\347\253\347v\271\"\303\265W\203\"\203\244\265T". . .,
148720 <unfinished ...>

Listing 1.2. Benign cache-cleaning application pattern mismatch for Read User File

4436;21:30:03;0penat ; (AT_FDCWD, "U_DIR/large_image.jpg",
O_RDONLY|O_LARGEFILE) = 119

4436;21:30:03;fstat64; (119, {st_mode=0, st_size=1, ...}) =0

4436;21:30:03;read; (119, <unfinished ...>

4436;21:30:03;read; ("\377\330\377\340\0\20JFIF\0\1\1\1\04\04\0\0
\377\376\0LFile sou"..., 8192) pow2

4436;21:30:03;read; (119, "\344\6Q,\24\266\325j\333\244\312N\371#
\2\247\236%\244\363Bx\2\356\f\235\205 (\266\360.\7"
..., 8192) pow2

4436;21:30:03;read; (119, <unfinished ...>

4436;21:30:03;read; ("1\214\254\223\10\250\222H\356\304\366\2\275\
r-\2518\342\273t\357\177\336\306\376\33G\315\225p
\272\276" ..., 8192) pow2

Table 2. List of token names and their respective pattern

Token|Pattern Purpose

OP |System call operation

AL |All including newline

UD |User directory

N Newline

ON |Optional match newline

A Match all

UFC |Unknown file creations

DQ |Dotted quad formats (i.e. IPv4)
AD |URL address

OF |Obfuscated file

SEF |Socket flags

GA |Get address info

MD |Match directory

MF |Match file (regular file with one extension)

20 C. Chew et al.

Table 3. List of common behavioural patterns discovered and their token representa-

tion

Pattern Name Pattern Combination

Rename & Unlink File OP(renameat)>UD>\\(?!Android) >N>ON
>OP(fstatat64) >N>ON>OP (unlinkat)>UD>A

Unlinking User Files OP (unlinkat)>UD>MF

Unknown File Ext Created OP(openat)>UD>UFC>A

Read User File OP(openat)>UD>MF>(>AL>OP (read)>N>){3}

Write File Unknown Extension|OP(openat)>UD>UFC>AL>OP (write)>A

IPv4 Connections OP(connect)>DQ

Directory Search OP(openat)>MD>N>N>(>OP(getdents64)>N>)*
>OP(close)>A

URL to Obfuscated Filename |OP(openat)>OF>(>OP(openat>)?>AL
>OP(pwrite64)>AD

Socket Create and Connect OP(socket)>SF>N>(>OP (socket) >N>)?>A
>OP (setsockopt) >N>(>OP (setsockopt)
>N>)>7?>0P(connect) >N>(>OP(connect)
>N>)>7>0P(fentl64) >N>(>O0P(fentl6d)>N>)
>7>0P (fstat64) >N>(>OP(fstat64)>N>)

>7>0P(write) >GA
File Write OP(openat)>AL>OP (write)>A
File Read OP(openat)>AL>OP(read)>A
Generic File Unlink OP (unlinkat)

(*?2(.(\w~)(\bflock|xml[bak|db-wal\b)\").+)

Note: Some sub-patterns were retained as a regular expression as certain parts
are too specific to be represented as tokens.

