Skip to main content

Polysome-seq as a Measure of Translational Profile from Deoxyhypusine Synthase Mutant in Saccharomyces cerevisiae

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2020)

Abstract

The profile of proteins observed in a cell is characterized by the control of gene expression, which has several regulation points acting individually or in concert, such as epigenetic, transcriptional, translational, post-transcriptional or post-translational modification. Copulating the total mRNA data and mRNAs actively translated can facilitate the identification of the key regulatory points of gene expression. Here, we analyze the transcriptional and translational profiles of the deoxyhypusine synthase mutant dys1-1 in yeast. This enzyme is involved in the post-translational modification of translation factor eIF5A, which has an important role in the elongation translational process. This work presents gene expression data from the total mRNA levels and the polysomally-loaded mRNAs for the Saccharomyces cerevisiae DYS1 and dys1-1 strains, based on RNA-seq and Polysome-seq. Our results showed that for this mutant, most of the changes in the transcripts forwarded for translation are due to transcriptional control; and, to solve translation problems, cell responds with positive regulation of ribosome biogenesis. Besides, polysome-seq as a tool to study translation profiles is useful to understand gene expression changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Almeida, O.P., et al.: Hypusine modification of the ribosome-binding protein eIF5A, a target for new anti-inflammatory drugs: understanding the action of the inhibitor GC7 on a murine macrophage cell line. Curr. pharm. Des. 20(2), 284–92 (2014)

    Article  Google Scholar 

  2. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. (2001). https://doi.org/10.1214/aos/1013699998

    Article  Google Scholar 

  3. Buskirk, A.R., Green, R.: Ribosome pausing, arrest and rescue in bacteria and eukaryotes. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 372, 20160183 (2017). https://doi.org/10.1098/rstb.2016.0183

    Article  CAS  Google Scholar 

  4. Chassé, H., Boulben, S., Costache, V., Cormier, P., Morales, J.: Analysis of translation using polysome profiling. Nucleic Acids Res. (2017). https://doi.org/10.1093/nar/gkw907

    Article  PubMed  Google Scholar 

  5. Chen, K.Y., Liu, A.Y.: Biochemistry and function of hypusine formation on eukaryotic initiation factor 5A. NeuroSignals (1997). https://doi.org/10.1159/000109115

    Article  Google Scholar 

  6. Csárdi, G., Franks, A., Choi, D.S., Airoldi, E.M., Drummond, D.A.: Accounting for experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-state protein levels in yeast. PLoS Genet. 11(5), e1005206 (2015). https://doi.org/10.1371/journal.pgen.1005206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dever, T.E., Ivanov, I.P.: Roles of polyamines in translation. J. Biol. Chem. 293(48), 18719–18729 (2018). https://doi.org/10.1074/jbc.TM118.003338. http://www.jbc.org/

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Engel, S.R., et al.: The reference genome sequence of saccharomyces cerevisiae: then and now. G3: Genes Genomes Genetics 4(3), 389–398 (2014). https://doi.org/10.1534/g3.113.008995

    Article  CAS  PubMed  Google Scholar 

  9. Galvão, F.C., Rossi, D., Silveira, W.D.S., Valentini, S.R., Zanelli, C.F.: The deoxyhypusine synthase mutant dys1-1 reveals the association of eIF5A and Asc1 with cell wall integrity. Plos One 8(4), e60140 (2013). https://doi.org/10.1371/journal.pone.0060140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heyer, E.E., Moore, M.J.: Redefining the translational status of 80S monosomes. Cell 164(4), 757–769 (2016). https://doi.org/10.1016/j.cell.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  11. Ingolia, N.T.: Ribosome profiling: new views of translation, from single codons to genome scale. Nat. Rev. Genet. 15, 205–213 (2014). https://doi.org/10.1038/nrg3645

    Article  CAS  PubMed  Google Scholar 

  12. Ingolia, N.T., Ghaemmaghami, S., Newman, J.R., Weissman, J.S.: Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324(5924), 218–223 (2009). https://doi.org/10.1126/science.1168978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jin, H.Y., Xiao, C.: An integrated polysome profiling and ribosome profiling method to investigate in vivo translatome. In: Methods in Molecular Biology, vol. 1712, pp. 1–18. Humana Press Inc. (2018). https://doi.org/10.1007/978-1-4939-7514-31

  14. Lahtvee, P.J., et al.: Absolute quantification of protein and mRNA abundances demonstrate variability in gene-specific translation efficiency in yeast. Cell Syst. 4(5), 495–504 (2017). https://doi.org/10.1016/J.CELS.2017.03.003. https://www.sciencedirect.com/science/article/pii/S2405471217300881#mmc4

    Article  CAS  PubMed  Google Scholar 

  15. Landau, G., Bercovich, Z., Park, M.H., Kahana, C.: The role of polyamines in supporting growth of mammalian cells is mediated through their requirement for translation initiation and elongation. J. Biol. Chem. 285(17), 12474–12481 (2010). https://doi.org/10.1074/jbc.M110.106419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Y., Beyer, A., Aebersold, R.: On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016). https://doi.org/10.1016/j.cell.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  17. Martínez-Fernández, V., et al.: Prefoldin-like Bud27 influences the transcription of ribosomal components and ribosome biogenesis in Saccharomyces cerevisiae. RNA (2020). https://doi.org/10.1261/rna.075507.120

    Article  PubMed  Google Scholar 

  18. Piccirillo, C.A., Bjur, E., Topisirovic, I., Sonenberg, N., Larsson, O.: Translational control of immune responses: from transcripts to translatomes. Nat. Immunol. 15(6), 503–511 (2014). https://doi.org/10.1038/ni.2891. http://www.nature.com/doifinder/10.1038/ni.2891

    Article  CAS  PubMed  Google Scholar 

  19. Rossi, D., Kuroshu, R., Zanelli, C.F., Valentini, S.R.: eIF5A and EF-P: two unique translation factors are now traveling the same road. Wiley Interdiscip. Rev.: RNA 5(2), 209–222 (2014). https://doi.org/10.1002/wrna.1211

    Article  CAS  PubMed  Google Scholar 

  20. Schnier, J., Schwelberger, H.G., Smit-McBride, Z., Kang, H.A., Hershey, J.W.: Translation initiation factor 5A and its hypusine modification are essential for cell viability in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. (1991). https://doi.org/10.1128/MCB.11.6.3105

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schuller, A.P., Green, R.: Roadblocks and resolutions in eukaryotic translation. Nat. Rev. Mol. Cell Biol. 19(8), 526–541 (2018). https://doi.org/10.1038/s41580-018-0011-4. http://www.nature.com/articles/s41580-018-0011-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuller, A.P., Wu, C.C.C., Dever, T.E., Buskirk, A.R., Green, R.: eif5a functions globally in translation elongation and termination. Mol. Cell 66(2), 194–205 (2017). https://doi.org/10.1016/j.molcel.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sen, N.D., Zhou, F., Ingolia, N.T., Hinnebusch, A.G.: Genome-wide analysis of translational efficiency reveals distinct but overlapping functions of yeast DEAD-box RNA helicases Ded1 and eIF4A. Genome Res. 25(8), 1196–1205 (2015). https://doi.org/10.1101/gr.191601.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This study was financially supported by grant #10/50044-6, São Paulo Research Foundation (FAPESP). This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernanda Manaia Demarqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demarqui, F.M., Paiva, A.C.S., Santoni, M.M., Watanabe, T.F., Valentini, S.R., Zanelli, C.F. (2020). Polysome-seq as a Measure of Translational Profile from Deoxyhypusine Synthase Mutant in Saccharomyces cerevisiae. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics