Skip to main content

Classification of Musculoskeletal Abnormalities with Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Bioinformatics and Computational Biology (BSB 2020)

Abstract

Computer-aided diagnosis has the potential to alleviate the burden on medical doctors and decrease misdiagnosis, but building a successful method for automatic classification is challenging due to insufficient labeled data. In this work, we investigate the usage of convolutional neural networks to diagnose musculoskeletal abnormalities using radiographs (X-rays) of the upper limb and measure the impact of several techniques in our model. We achieved the best results by utilizing an ensemble model that employs a support vector machine to combine different models, resulting in an overall AUC ROC of 0.8791 and Kappa of 0.6724 when evaluated using an independent test set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://stanfordmlgroup.github.io/competitions/mura/.

References

  1. Alickovic, E., Subasi, A.: Medical decision support system for diagnosis of heart Arrhythmia using DWT and random forests classifier. J. Med. Syst. 40(4), 1–12 (2016). https://doi.org/10.1007/s10916-016-0467-8

    Article  Google Scholar 

  2. Arzhaeva, Y., et al.: Development of automated diagnostic tools for pneumoconiosis detection from chest X-ray radiographs (2019)

    Google Scholar 

  3. Cadene, R.: Pretrained models for Pytorch (2017). https://github.com/Cadene/pretrained-models.pytorch

  4. Chiu, C.C., et al.: State-of-the-art speech recognition with sequence-to-sequence models. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4774–4778. IEEE (2018). https://doi.org/10.1109/ICASSP.2018.8462105

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255. IEEE (2009). https://doi.org/10.1109/CVPR.2009.5206848

  6. Ding, Y., et al.: A deep learning model to predict a diagnosis of Alzheimer disease by using 18F-FDG PET of the brain. Radiology 290(2), 456–464 (2019). https://doi.org/10.1148/radiol.2018180958

    Article  PubMed  Google Scholar 

  7. Dolatabadi, A.D., Khadem, S.E.Z., Asl, B.M.: Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM. Comput. Methods Programs Biomed. 138, 117–126 (2017). https://doi.org/10.1016/j.cmpb.2016.10.011

    Article  Google Scholar 

  8. Garud, H., et al.: High-magnification multi-views based classification of breast fine needle aspiration cytology cell samples using fusion of decisions from deep convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 76–81 (2017). https://doi.org/10.1109/CVPRW.2017.115

  9. Global Burden of Disease Collaborative Network: Global burden of disease study 2017 (GBD 2017) results (2018)

    Google Scholar 

  10. Habibzadeh, M., Jannesari, M., Rezaei, Z., Baharvand, H., Totonchi, M.: Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception. In: Proceedings of the 10th International Conference on Machine Vision (ICMV), vol. 10696, p. 1069612. International Society for Optics and Photonics (2017). https://doi.org/10.1117/12.2311282

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017). https://doi.org/10.1109/CVPR.2017.243

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Li, Q., Li, W., Zhang, J., Xu, Z.: An improved k-nearest neighbour method to diagnose breast cancer. Analyst 143(12), 2807–2811 (2018). https://doi.org/10.1039/C8AN00189H

    Article  CAS  PubMed  Google Scholar 

  15. Liu, X., et al.: Automated layer segmentation of retinal optical coherence tomography images using a deep feature enhanced structured random forests classifier. IEEE J. Biomed. Health Inform. 23(4), 1404–1416 (2018). https://doi.org/10.1109/JBHI.2018.2856276

    Article  PubMed  Google Scholar 

  16. Ma, J., Wu, F., Zhu, J., Xu, D., Kong, D.: A pre-trained convolutional neural network based method for thyroid nodule diagnosis. Ultrasonics 73, 221–230 (2017). https://doi.org/10.1016/j.ultras.2016.09.011

    Article  PubMed  Google Scholar 

  17. Melas-Kyriazi, L.: EfficientNet PyTorch (2019). https://github.com/lukemelas/EfficientNet-PyTorch

  18. Nakashima, K.: Grad-CAM with PyTorch (2017). https://github.com/kazuto1011/grad-cam-pytorch

  19. Nishio, M., et al.: Computer-aided diagnosis of lung nodule classification between benign nodule, primary lung cancer, and metastatic lung cancer at different image size using deep convolutional neural network with transfer learning. PLoS ONE 13(7), e0200721 (2018). https://doi.org/10.1371/journal.pone.0200721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Panwar, M., Acharyya, A., Shafik, R.A., Biswas, D.: K-nearest neighbor based methodology for accurate diagnosis of diabetes mellitus. In: Sixth International Symposium on Embedded Computing and System Design (ISED), pp. 132–136. IEEE (2016). https://doi.org/10.1109/ISED.2016.7977069

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8026–8037 (2019)

    Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  23. Rajpurkar, P., et al.: MURA: large dataset for abnormality detection in musculoskeletal radiographs. arXiv:1712.06957 (2017)

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (ICCV), pp. 618–626 (2017). https://doi.org/10.1109/ICCV.2017.74

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  26. Sun, Y., Liang, D., Wang, X., Tang, X.: DeepID3: face recognition with very deep neural networks. arXiv:1502.00873 (2015)

  27. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, pp. 4278–4284 (2017)

    Google Scholar 

  28. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the Inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2818–2826 (2016). https://doi.org/10.1109/CVPR.2016.308

  29. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. arXiv:1905.11946 (2019)

  30. Tschandl, P., et al.: Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 155(1), 58–65 (2019). https://doi.org/10.1001/jamadermatol.2018.4378

    Article  PubMed  Google Scholar 

  31. Wang, H., Zheng, B., Yoon, S.W., Ko, H.S.: A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur. J. Oper. Res. 267(2), 687–699 (2018). https://doi.org/10.1016/j.ejor.2017.12.001

    Article  Google Scholar 

  32. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2097–2106 (2017). https://doi.org/10.1109/CVPR.2017.369

  33. Woolf, A.D., Pfleger, B.: Burden of major musculoskeletal conditions. Bull. World Health Organ. 81, 646–656 (2003)

    PubMed  PubMed Central  Google Scholar 

  34. World Health Organisation: Musculoskeletal conditions fact sheet (2019). https://www.who.int/news-room/fact-sheets/detail/musculoskeletal-conditions

  35. Xie, Y., Richmond, D.: Pre-training on grayscale ImageNet improves medical image classification. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11134, pp. 476–484. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11024-6_37

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme Tiaki Sassai Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, G.T.S., da Silva Segundo, L.B., Dias, Z. (2020). Classification of Musculoskeletal Abnormalities with Convolutional Neural Networks. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics