Skip to main content

Combining Mutation and Gene Network Data in a Machine Learning Approach for False-Positive Cancer Driver Gene Discovery

  • Conference paper
  • First Online:
Book cover Advances in Bioinformatics and Computational Biology (BSB 2020)

Abstract

An increasing interest in Cancer Genomics research emerged from the advent and widespread use of next-generation sequencing technologies, which have generated a large amount of digital biological data. However, not all of this information in fact contributes to cancer studies. For instance, false-positive-driver genes may contain characteristics of cancer genes but are not actually relevant to the cancer initiation and progression. Including this type of genes in cancer studies may lead to identifying unrealistic trends in the data and mislead biomedical decisions. Therefore, proper screening to detect this specific type of gene among genes considered drivers is of utmost importance. This work is focused on the development of models dedicated to this task. Support Vector Machine (SVM) and Random Forest (RF) machine learning algorithms were selected to induce predictive models to classify supposedly driver genes as real drivers or false-positive drivers based on both mutation data and gene network interactions. The results confirmed that the combination of the two sources of information improves the performance of the models. Moreover, SVM and RF models achieved a classification accuracy of 85.0% and 82.4% over labeled data, respectively. Finally, a literature-based analysis was performed over the classification of a new set of genes to further validate the concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.who.int/news-room/fact-sheets/detail/cancer.

  2. 2.

    https://www.cbioportal.org/datasets.

  3. 3.

    https://www.cbioportal.org/api/swagger-ui.html.

  4. 4.

    https://docs.gdc.cancer.gov/Data/File_Formats/MAF_Format/.

  5. 5.

    Version 6.0 – http://ncg.kcl.ac.uk/false_positives.php.

  6. 6.

    Version 6.0 – http://ncg.kcl.ac.uk/download.php.

  7. 7.

    Version 91 – https://cancer.sanger.ac.uk/census.

  8. 8.

    www.intogen.org/.

  9. 9.

    bionlp.bcgsc.ca/cancermine/ – query performed in October, 2020.

References

  1. Bailey, M.H., et al.: Comprehensive characterization of cancer driver genes and mutations. Cell 173(2), 371–385.e18 (2018). https://doi.org/10.1016/j.cell.2018.02.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cerami, E., et al.: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012). https://doi.org/10.1158/2159-8290.CD-12-0095

    Article  PubMed  Google Scholar 

  3. Cho, A., Shim, J.E., Kim, E., Supek, F., Lehner, B., Lee, I.: MUFFINN: cancer gene discovery via network analysis of somatic mutation data. Genome Biol. 17(1), 129 (2016). https://doi.org/10.1186/s13059-016-0989-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Collier, O., Stoven, V., Vert, J.P.: LOTUS: a single- and multitask machine learning algorithm for the prediction of cancer driver genes. PLoS Comput. Biol. 15(9), 1–27 (2019). https://doi.org/10.1371/journal.pcbi.1007381

    Article  CAS  Google Scholar 

  5. Cutigi, J.F., Evangelista, A.F., Simao, A.: Approaches for the identification of driver mutations in cancer: a tutorial from a computational perspective. J. Bioinform. Comput. Biol. 18(03), 2050016 (2020). https://doi.org/10.1142/S021972002050016X. pMID: 32698724

    Article  CAS  PubMed  Google Scholar 

  6. Cutigi, J.F., Evangelista, A.F., Simao, A.: GeNWeMME: a network-based computational method for prioritizing groups of significant related genes in cancer. In: Kowada, L., de Oliveira, D. (eds.) BSB 2019. LNCS, vol. 11347, pp. 29–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46417-2_3

    Chapter  Google Scholar 

  7. Das, J., Yu, H.: HINT: high-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 6, 92 (2012). https://doi.org/10.1186/1752-0509-6-92

    Article  PubMed  PubMed Central  Google Scholar 

  8. DeLong, E.R., DeLong, D.M., Clarke-Pearson, D.L.: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44, 837–845 (1988)

    Article  CAS  Google Scholar 

  9. Dimitrakopoulos, C.M., Beerenwinkel, N.: Computational approaches for the identification of cancer genes and pathways. Wiley Interdisc. Rev.: Syst. Biol. Med. 9(1), e1364 (2017). https://doi.org/10.1002/wsbm.1364

    Article  CAS  Google Scholar 

  10. Gumpinger, A.C., Lage, K., Horn, H., Borgwardt, K.: Prediction of cancer driver genes through network-based moment propagation of mutation scores. Bioinformatics 36(Supplement\(\_\)1), i508–i515 (2020). https://doi.org/10.1093/bioinformatics/btaa452

  11. Han, Y., et al.: DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies. Nucleic Acids Res. 47(8), e45–e45 (2019)

    Article  CAS  Google Scholar 

  12. Horn, H., et al.: NetSig: network-based discovery from cancer genomes. Nat. Methods 15, 61–66 (2018). https://doi.org/10.1038/nmeth.4514

    Article  CAS  PubMed  Google Scholar 

  13. Hristov, B.H., Singh, M.: Network-based coverage of mutational profiles reveals cancer genes. Cell Syst. 5(3), 221–229 (2017)

    Article  CAS  Google Scholar 

  14. Jassal, B., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 48(D1), D498–D503 (2020)

    CAS  PubMed  Google Scholar 

  15. Keshava Prasad, T.S., et al.: Human protein reference database-2009 update. Nucleic Acids Res. 37(Database issue), D767–D772 (2009). https://doi.org/10.1093/nar/gkn892

    Article  CAS  PubMed  Google Scholar 

  16. Kim, Y., Cho, D., Przytycka, T.M.: Understanding genotype-phenotype effects in cancer via network approaches. PLoS Comput. Biol. 12(3), e1004747 (2016). https://doi.org/10.1371/journal.pcbi.1004747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leiserson, M.D.M., et al.: Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 47(2), 106–114 (2015). https://doi.org/10.1038/ng.3168

    Article  CAS  PubMed  Google Scholar 

  18. Lever, J., Zhao, E.Y., Grewal, J., Jones, M.R., Jones, S.J.: CancerMine: a literature-mined resource for drivers, oncogenes and tumor suppressors in cancer. Nat. Methods 16(6), 505–507 (2019)

    Article  CAS  Google Scholar 

  19. Luck, K., et al.: A reference map of the human binary protein interactome. Nature 580, 1–7 (2020)

    Article  Google Scholar 

  20. Martínez-Jiménez, F., et al.: A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 1–18 (2020)

    Article  Google Scholar 

  21. Oldham, S., Fulcher, B., Parkes, L., Arnatkeviciute, A., Suo, C., Fornito, A.: Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 14(7), 1–23 (2019). https://doi.org/10.1371/journal.pone.0220061

    Article  CAS  Google Scholar 

  22. Ozturk, K., Dow, M., Carlin, D.E., Bejar, R., Carter, H.: The emerging potential for network analysis to inform precision cancer medicine. J. Mol. Biol. 430(18), 2875–2899 (2018)

    Article  CAS  Google Scholar 

  23. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  24. Repana, D., et al.: The Network of Cancer Genes (NCG): a comprehensive catalogue of known and candidate cancer genes from cancer sequencing screens. Genome Biol. 20(1), 1 (2019). https://doi.org/10.1186/s13059-018-1612-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reyna, M.A., Leiserson, M.D.M., Raphael, B.J.: Hierarchical HotNet: identifying hierarchies of altered subnetworks. Bioinformatics 34(17), i972–i980 (2018). https://doi.org/10.1093/bioinformatics/bty613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sondka, Z., Bamford, S., Cole, C.G., Ward, S.A., Dunham, I., Forbes, S.A.: The COSMIC cancer gene census: describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 18(11), 696–705 (2018)

    Article  CAS  Google Scholar 

  27. Tamborero, D., et al.: Comprehensive identification of mutational cancer driver genes across 12 tumor types. Sci. Rep. 3, 2650 (2013)

    Article  Google Scholar 

  28. Vandin, F., Upfal, E., Raphael, B.J.: Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18(3), 507–522 (2011). https://doi.org/10.1089/cmb.2010.0265. pMID: 21385051

    Article  CAS  PubMed  Google Scholar 

  29. Weinstein, J.N., et al.: The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45(10), 1113 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Francisco Cutigi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cutigi, J.F. et al. (2020). Combining Mutation and Gene Network Data in a Machine Learning Approach for False-Positive Cancer Driver Gene Discovery. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics