Skip to main content

Unraveling the Role of Nanobodies Tetrad on Their Folding and Stability Assisted by Machine and Deep Learning Algorithms

  • Conference paper
  • First Online:
  • 523 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12558))

Abstract

Nanobodies (Nbs) achieve high solubility and stability due to four conserved residues referred to as the Nb tetrad. While several studies have highlighted the importance of the Nbs tetrad to their stability, a detailed molecular picture of their role has not been provided. In this work, we have used the Rosetta package to engineer synthetic Nbs lacking the Nb tetrad and used the Rosetta Energy Function to assess the structural features of the native and designed Nbs concerning the presence of the Nb tetrad. To develop a classification model, we have benchmarked three different machine learning (ML) and deep learning (DL) algorithms and concluded that more complex models led to better binary classification for our dataset. Our results show that these two classes of Nbs differ significantly in features related to solvation energy and native-like structural properties. Notably, the loss of stability due to the tetrad’s absence is chiefly driven by the entropic contribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muyldermans, S.: Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013)

    Article  CAS  Google Scholar 

  2. Mir, M.A., Mehraj, U., Sheikh, B.A., Hamdani, S.S.: Nanobodies: The “Magic Bullets” in therapeutics, drug delivery and diagnostics. Hum. Antib. 28, 29–51 (2020)

    Article  CAS  Google Scholar 

  3. Vincke, C., Muyldermans, S.: Introduction to heavy chain antibodies and derived Nanobodies. Methods Mol. Biol. 911, 15–26 (2012)

    CAS  PubMed  Google Scholar 

  4. Morrison, C.: Nanobody approval gives domain antibodies a boost. Nat. Rev. Drug. Discov. 18, 485–487 (2019)

    Article  CAS  Google Scholar 

  5. Jovčevska, I., Muyldermans, S.: The Therapeutic potential of Nanobodies. BioDrugs 34(1), 11–26 (2019). https://doi.org/10.1007/s40259-019-00392-z

    Article  CAS  PubMed Central  Google Scholar 

  6. Beghein, E., Gettemans, J.: Nanobody technology: A versatile toolkit for microscopic imaging, Protein–Protein interaction analysis, and protein function exploration. Front. Immunol. 8, 771 (2017)

    Article  Google Scholar 

  7. Konwarh, R.: Nanobodies: Prospects of expanding the Gamut of neutralizing antibodies against the novel coronavirus, SARS-CoV-2. Front. Immunol. 11, 1531 (2020)

    Article  CAS  Google Scholar 

  8. Revets, H., De Baetselier, P., Muyldermans, S.: Nanobodies as novel agents for cancer therapy. Expert. Opin. Biol. Ther. 5, 111–124 (2005)

    Article  CAS  Google Scholar 

  9. Muyldermans, S.: Single domain camel antibodies: Current status. J. Biotechnol. 74, 277–302 (2001)

    CAS  PubMed  Google Scholar 

  10. Barthelemy, P.A., et al.: Comprehensive analysis of the factors contributing to the stability and solubility of autonomous human VH domains. J. Biol. Chem. 283, 3639–3654 (2008)

    Article  CAS  Google Scholar 

  11. Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., Conrath, K.: General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284, 3273–3284 (2009)

    Article  CAS  Google Scholar 

  12. Mitchell, L.S., Colwell, L.J.: Comparative analysis of nanobody sequence and structure data. Proteins 86, 697–706 (2018)

    Article  CAS  Google Scholar 

  13. Kunz, P., et al.: Exploiting sequence and stability information for directing nanobody stability engineering. Biochim. Biophys. Acta Gen. Subj. 1861, 2196–2205 (2017)

    Article  CAS  Google Scholar 

  14. Rouet, R., Dudgeon, K., Christie, M., Langley, D., Christ, D.: Fully human VH single domains that rival the stability and cleft recognition of camelid antibodies. J. Biol. Chem. 290, 11905–11917 (2015)

    Article  CAS  Google Scholar 

  15. Tanha, J., Dubuc, G., Hirama, T., Narang, S.A., MacKenzie, C.R.: Selection by phage display of llama conventional V(H) fragments with heavy chain antibody V(H)H properties. J. Immunol. Methods 263, 97–109 (2002)

    Article  CAS  Google Scholar 

  16. Soler, M.A., de Marco, A., Fortuna, S.: Molecular dynamics simulations and docking enable to explore the biophysical factors controlling the yields of engineered nanobodies. Sci. Rep. 6, 34869 (2016)

    Article  CAS  Google Scholar 

  17. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28 (1998)

    Article  Google Scholar 

  18. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  19. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, classifiaction. IEEE. Trans. Newural. Netw. 3(5), 683–697 (1992)

    Article  CAS  Google Scholar 

  20. Leaver-Fay, A., et al.: ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011)

    Article  CAS  Google Scholar 

  21. Alford, R.F., et al.: The Rosetta all-atom energy function for macromolecular modeling and design. J. Chem. Theory Comput. 13, 3031–3048 (2017)

    Article  CAS  Google Scholar 

  22. Pedregosa, F., et al.: Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    Google Scholar 

  23. McKinney, W.: Data structures for statistical computing in python. In: Proceedings of the 9th Python in Science Conference, pp. 56–61. Austin (2010)

    Google Scholar 

  24. Harris, C.R., et al.: Array programming with NumPy. Nature 585, 357–362 (2020)

    Article  CAS  Google Scholar 

  25. Abadi, M., et al.: Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  26. Gulli, A., Pal, S.: Deep learning with Keras. Packt Publishing Ltd, Birmingham (2017)

    Google Scholar 

  27. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals Eugen. 7, 179–188 (1936)

    Article  Google Scholar 

  28. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  Google Scholar 

  29. Prism, G.: Graphpad software. San Diego, CA, USA (1994)

    Google Scholar 

  30. Powers, D.M.: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

    Google Scholar 

  31. Cunha, K.C., Rusu, V.H., Viana, I.F., Marques, E.T., Dhalia, R., Lins, R.D.: Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations. Biopolymers 103, 351–361 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been funded by FACEPE, CAPES, CNPq, and FIOCRUZ. We acknowledge the LNCC for the availability of resources and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Dias Lins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferraz, M.V.F., dos Santos Adan, W.C., Lins, R.D. (2020). Unraveling the Role of Nanobodies Tetrad on Their Folding and Stability Assisted by Machine and Deep Learning Algorithms. In: Setubal, J.C., Silva, W.M. (eds) Advances in Bioinformatics and Computational Biology. BSB 2020. Lecture Notes in Computer Science(), vol 12558. Springer, Cham. https://doi.org/10.1007/978-3-030-65775-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65775-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65774-1

  • Online ISBN: 978-3-030-65775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics