Skip to main content

Approximate Explanations for Classification of Histopathology Patches

  • Conference paper
  • First Online:
ECML PKDD 2020 Workshops (ECML PKDD 2020)

Abstract

An approximation method for faster generation of explanations in medical imaging classifications is presented. Previous results in literature show that generating detailed explanations with LIME, especially when fine tuning parameters, is very computationally and time demanding. This is true both for manual and automatic parameter tuning. The alternative here presented can decrease computation times by several orders of magnitude, while still identifying the most relevant regions in images. The approximated explanations are compared to previous results in literature and medical expert segmentations for a dataset of histopathology images used in a binary classification task. The classifications of a convolutional neural network trained on this dataset are explained by means of heatmap visualizations. The results show that it seems to be possible to achieve much faster computation times by trading off finer detail in the explanations. This could give more options for users of artificial intelligence black box systems in the context of medical imaging tasks, in regards to generating insight or auditing decision systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE Access 6, 52138–52160 (2018)

    Article  Google Scholar 

  2. Huang, Y., Chung, A.C.S.: Evidence localization for pathology images using weakly supervised learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 613–621. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_68

    Chapter  Google Scholar 

  3. Kaggle: Histopathologic cancer detection. https://www.kaggle.com/c/histopathologic-cancer-detection

  4. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Brief. Bioinform. 19, 1236–1246 (2017)

    Article  Google Scholar 

  5. Pocevičiūtė, M., Eilertsen, G., Lundström, C.: Survey of XAI in digital pathology. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds.) Artificial Intelligence and Machine Learning for Digital Pathology. LNCS (LNAI), vol. 12090, pp. 56–88. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50402-1_4

    Chapter  Google Scholar 

  6. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  7. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

    Book  Google Scholar 

  8. Palatnik de Sousa, I., Maria Bernardes Rebuzzi Vellasco, E.: Local interpretable model-agnostic explanations for classification of lymph node metastases. Sensors 19(13), 2969 (2019)

    Google Scholar 

  9. Palatnik de Sousa, I., Maria Bernardes Rebuzzi Vellasco, M., Costa da Silva, E.: Evolved explainable classifications for lymph node metastases. arXiv preprint arXiv:2005.07229 (2020)

  10. Tang, Z., et al.: Interpretable classification of Alzheimer’s disease pathologies with a convolutional neural network pipeline. Nat. Commun. 10(1), 1–14 (2019)

    Article  Google Scholar 

  11. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equivariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 210–218. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_24

    Chapter  Google Scholar 

Download references

Acknowledgment

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal do Nível Superior - Brasil (CAPES), Finance Code 001. The authors also acknowledge the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Rio de Janeiro (FAPERJ) for the funding to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iam Palatnik de Sousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Sousa, I.P., Vellasco, M.M.B.R., da Silva, E.C. (2020). Approximate Explanations for Classification of Histopathology Patches. In: Koprinska, I., et al. ECML PKDD 2020 Workshops. ECML PKDD 2020. Communications in Computer and Information Science, vol 1323. Springer, Cham. https://doi.org/10.1007/978-3-030-65965-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65965-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65964-6

  • Online ISBN: 978-3-030-65965-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics