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Abstract. We propose a deep learning approach for identifying malware
families using the function call graphs of x86 assembly instructions.
Though prior work on static call graph analysis exists, very little involves
the application of modern, principled feature learning techniques to the
problem. In this paper, we introduce a system utilizing an executable’s
function call graph where function representations are obtained by way of
a recurrent neural network (RNN) autoencoder which maps sequences of
x86 instructions into dense, latent vectors. These function embeddings are
then modeled as vertices in a graph with edges indicating call dependencies.
Capturing rich, node-level representations as well as global, topological
properties of an executable file greatly improves malware family detection
rates and contributes to a more principled approach to the problem in
a way that deliberately avoids tedious feature engineering and domain
expertise. We test our approach by performing several experiments on a
Microsoft malware classification data set and achieve excellent separation
between malware families with a classification accuracy of 99.41%.

Keywords: neural networks · representation learning · malware detec-
tion · function call graph · reverse engineering

1 Introduction

Malware is often classified into families based on certain shared characteristics
between samples. It is often very useful to distinguish between malware families in
order to detect trends in malware infections over time and to attribute authorship.
Traditionally, classifying malware has required teams of threat researchers to
perform advanced reverse engineering techniques in order to identify various
unique characteristics that define a family. However, cyber threats have exploded
in recent years making it difficult for threat researchers to keep up. Malware in
particular continues to grow in sophistication with new strains released daily. The
practice of malware polymorphism renders traditional automated signature-based
approaches ineffective for identifying novel instances of malware.

In this work, we propose a new approach to malware classification that is
inspired by reverse engineering techniques yet requires no domain-specific feature
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Fig. 1. Variable-length sequences of x86 instructions found in functions are embedded
into fixed-length vectors using a GRU-based sequence-to-sequence autoencoder.

engineering and is invariant to polymorphism. Specifically, we devise a function
call-graph framework in which the function representations are learned. By
framing the problem through the lens of representation learning, we are able to
greatly improve automatic classification while also contributing to human insight
which is helpful to determine authorship and intent. By incorporating rich, node-
level representations as well as global, structural properties of an executable’s
call graph, we are able to classify malware families with very high accuracy. Our
approach consists of several composite models aimed at learning robust function
representations that when employed together form the full classification system.

2 Related Work

Call graphs are commonly used by malware analysts and reverse engineers to
manually analyze and inspect executable files [14]. Indeed, many real-world data
is naturally represented using graphs. Graphs have been successfully utilized
in analyzing data from a wide variety of domains including social network link
prediction [11], protein-protein interactions [1], and communication networks
[12]. Due to their expressive ability, there is growing interest in applying machine
learning techniques directly to graph-represented data to bypass tedious feature
engineering. Graph kernels have been proposed to allow for kernel-based methods
(such as support vector machines) to be applied directly to graph classification
problems. Kernels based on the Weisfeiler-Lehman test of graph isomorphism
have grown in popularity in recent years [21] owing to their relative simplicity
and strong discriminative ability.

In prior works, call graphs have been used to automatically classify malware
but typically these works employ relatively simple graph similarity measures such
as graph edit distance or rely on heavy feature engineering involving summary
statistics to describe functions in the graph [9,20,6,5]. We build on this call graph
approach by incorporating certain representation learning techniques such as
autoencoding and clustering [7] to obtain an improved function representation.
By extending the well-established call graph strategies with a principled represen-
tation learning approach, we forego the tedious and heuristic feature engineering
steps of prior work, giving us much better graph representations.



Fig. 2. G0 and G1 are considered similar since they both share a similar graph topology
and near-identical vertex label sets. On the other hand, G2 is considered very different
from both G0 and G1 since it neither shares a graph topology nor a vertex set with the
other graphs. The notion of graph “similarity” is clarified in Section 3.4

3 Call Graph Framework

A call graph describes the logical control flow of an executable file where func-
tions (or subroutines) are expressed as vertices and edges represent a depen-
dency or call relationship. Call graphs have proven to be extremely useful to
security researchers for the analysis and classification of malicious software.

Actual Predicted

mov edi, edi mov edi, edi

push ebp push ebp

mov ebp, esp mov ebp, esp

sub esp, 48 sub esp, 24

lea ecx, 0x lea ecx, 0x

push eax <unknown>

push ecx push ecx

call <addr> call <addr>

pop ecx pop ecx

... ...

... ...

Fig. 3. An example sequence decoding
given a latent embedding. The decoder is
able to re-create the original sequence with
high accuracy, indicating that the latent em-
bedding has captured sufficient information.

The main intuition behind the call
graph approach to malware classifica-
tion is that files sharing similar call
graphs are likely to have been gen-
erated from the same family. By un-
derstanding the logical flow of the ex-
ecutable, we can gain significant in-
sight into the intent of the malware.
It is important, therefore, to repre-
sent the graph such that we capture
rich vertex-level information as well
as global, topological properties of the
graph. The intuition is illustrated in
Figure 2.

3.1 Overview

We break the malware classification
task down into three primary subtasks
which we summarise here. In order to
obtain a good whole-graph representa-
tion of the executable, it is important
to first obtain high quality embeddings
for the functions contained within the
file. For this, we use a sequence-to-
sequence autoencoder which captures



the sequential nature of the x86 code instructions into a low-dimensional, latent
representation of the function.

This function embedding helps to make our model more robust to polymorphic
techniques since a perturbation in the x86 instruction space results in a propor-
tional perturbation in the embedding space. It can also be useful for identifying
the specific functions that make the file malicious. This function embedding
approach is one of the key differentiators between our approach and prior call
graph approaches to malware classification.

Having obtained function representions, we cluster the
embeddings to obtain discrete labels for the functions and
re-label the graph vertices according to their respective clus-
ter IDs. Finally, the whole-graph representation is obtained
using a graph kernel inspired by the Weisfeiler-Lehman
test of graph isomorphism. The message-passing property
of the Weisfeiler-Lehman framework allow us to efficiently
capture the global structure of the graph.

The executable binary files are disassembled into plain
text .asm files using IDA [10], a popular disassembler
widely used by security researchers. Due to the tendency of
code sections to contain very long sequences (sometimes up-
wards of hundreds of thousands of instructions), we break
up the sequences into functions or subroutines which pro-
vide natural delimiters much like sentences and paragraphs
are in a document. These shorter length sequences enable
us to use recurrent neural units such as long short-term
memory (LSTM) or gated recurrent units (GRU) where the
training samples are individual functions with sequences
ranging from very short (fewer than 5 instructions) to as
long as a few hundred instructions. By following the call

instructions in the code, we can construct the file’s call
graph, G = (V, E) where vertices v ∈ V represent functions
and edges e = (v, v′) ∈ V × V represent a call dependency.

The model considers only portions of the executable
containing valid x86 code instructions. Traditionally, these
code sections are identified by their section header name
(e.g. .text, .code, etc.) but malware often obfuscates
intent by using a packer which may result in non-standard
section names such as .brick or iuagwws. In addition to
all code found in the standard code sections, our approach
also considers such nonstandard sections containing valid x86 code to construct
the call graph.

We make a distinction between two kinds of vertices: internal functions and
external functions. Internal functions are those that are present in the executable
and subsequently can be disassembled directly. External functions are those which
are imported from external libraries and thus the code is not readily available



Fig. 4. The sequence-to-sequence autoencoder architecture. The left side of the network
encodes the sequence into a fixed-length latent representation. The right side of the
network decodes the latent representation back into the original sequence.

for disassembly. Our graph therefore consists of edges between both internal and
external functions. It is worth noting that executable files also contain sections
that do not typically contain code such as .data or .reloc. While these sections
provide additional data that is often quite useful for malware classification, we
ignore any non-code data for the call graph construction task. It is possible to
attribute the graph with the information contained in such non-code sections but
that is beyond the scope of this work as our principle concern is that of malware
classification using x86 code representations.

A sequence-to-sequence [23] GRU-based [3] autoencoder architecture was
chosen for the task of embedding variable-length sequences of x86 code instructions
into fixed-length, continuous vectors. The function embedding model is comprised
of an encoder and a decoder with the encoder being responsible for compressing
sequences into low-dimensional, latent representations. A decoder is used to
decompress the fixed-length vector back into the original variable-length sequence.
Because the autoencoder model must recreate the original sequence from its
bottleneck representation, the model learns an efficient, latent representation of
the original sequence. After the autoencoder model is trained, the decoder is
discarded and only the encoder portion is used to encode new sequences. Sequence-
to-sequence architectures have been used successfully in language modeling tasks
such as machine translation. Often, the goal is to translate a sequence of words
from one language, such as English, into another language, such as French.
The input sequence is encoded into a bottleneck layer which captures a latent
representation of the sequence irrespective of language. In machine translation
tasks, the input and output sequences are usually composed of words drawn
from disjoint vocabularies. However, our sequence-to-sequence task involves
reconstructing the original input sequence from the bottleneck representation, so
the same vocabulary is used for both the input and the output sequences. By
reconstructing the original input sequence from the latent representation, the
sequence-to-sequence network becomes an autoencoder.



Fig. 5. For each iteration of the Weisfeiler-Lehman algorithm, a new label is generated
for each vertex. The new label is derived by concatenating the labels of the adjacent
vertices.

3.2 Function Representations

Given a GRU with the following definitions,

zt = σg(Wzxt + Uzht−1 + bz)

rt = σg(Wrxt + Urht−1 + br)

ht = (1− zt) ◦ ht−1 + zt ◦ σh(Whxt + Uh(rt ◦ ht−1) + bh)

the hidden representation of a sequence with length T is taken to be hT .
During training, when the encoder receives the last token in the sequence xT =

<end>, the decoder is initialized with h
(enc)
T , thus transferring the compressed

sequence information to the decoder. In addition to the final hidden state of the
encoder, the decoder is also supplied with the original input sequence with a
one-step delay. That is, at time step t, the decoder receives the true input xt−1
for t > 1 where x0 = <start>. This technique of supplying the original sequence
with a delay into the decoder is known as teacher forcing.

The decoder, therefore, is trained to predict the next token of the sequence
given the hidden state of the encoder and the previous time step. This helps
to greatly speed up the training of the autoencoder. An example decoding is
illustrated in Figure 3. After training is completed, the decoder portion of the
model is thrown away and only the encoder is used to obtain latent representations
for function sequences.

It is common for authors of malware to obfuscate the intent of a file by adding
junk instructions such as no-op instructions. Because the function is represented
in a latent space, it is relatively immune to such common obfuscation tactics
which can often thwart signature-based or count-based solutions.

In our model, input sequences are tokenized as the full x86 assembly instruction
after replacing relative memory address locations with an <addr> string. The
vocabulary is thus composed of the top 20,000 most common x86 instructions
found in the corpus plus the <start> and <end> tokens.

The sequence-to-sequence autoencoder network is constructed as in Figure 4
with three hidden layers – two in the encoder and one in the decoder. The first
hidden layer in the encoder is a fully connected layer for learning x86 instruction



embedding vectors of length 64. The weights in this layer can be pre-trained using
a Word2vec [13], GloVe [16], or some other similar unsupervised word embedding
technique. However in our experiments we observed no ill effects from initializing
the weights randomly and learning the instruction embedding directly as part of
the autoencoder training.

3.3 Function Clustering

Algorithm 1: Weisfeiler-
Lehman Subtree Graph Kernel

Input: G, G′, h
Output: k(h)(G,G′)
for i← 1 to h do

for v ∈ V do
Nv = neighbors(v)
Sv = sort(Nv)
v, σv = hash(Sv)

end
for v′ ∈ V ′ do

Nv′ = neighbors(v′)
Sv′ = sort(Nv′)
v′, σv′ = hash(Sv′)

end

end

φ(G) = [c(G, σ0), . . . , c(G, σs)]
φ(G′) = [c(G′, σ0), . . . , c(G′, σs)]

return 〈φ(G), φ(G′)〉

Having obtained an x86 instruction se-
quence encoder, we embed all internal
functions found in the function call
graph and attribute the vertices with
their respective embeddings. External
vertices representing imported func-
tions or APIs remain non-attributed
since we are unable to obtain function
embeddings for these functions. They
therefore retain their discrete external
labels. The graphs then are composed
of two types of vertices: internal func-
tions with continuous attributes but
arbitrary discrete labels and external
functions with discrete labels but no
continuous attributes. In order to carry
out the graph classification task with
established Weisfeiler-Lehman kernels,
we must first obtain learned discrete la-
bels for internal functions. We achieve
this by clustering their continuous em-
beddings and labeling clusters accord-
ing to their cluster identifier. We can
then label the internal functions in
the graph with their discrete cluster
identifier. For the purposes of graph

classification, our labels can be non-descriptive (e.g. C1, C2, ...) but it may be
beneficial in future work to consider assigning descriptive cluster labels to aid
humans in manual threat research analysis.

Even modestly-sized files can contain tens of thousands of individual functions
so it is important to be able to scale our clustering task for many function samples.
Thus, we use the popular mini-batch K-means clustering algorithm [19] as it
is easily able to scale to many millions of samples. Using the so-called “elbow
method”, we found that k = 7000 was a reasonable choice for the number
of clusters for our data sets. Although several hierarchical- and density-based
clustering algorithms have been found to yield superior results over K-means,
these algorithms are generally unable to scale to many samples.



3.4 Graph Classification

A graph kernel is a function that computes an inner product between graphs and
can be thought of as a way to measure graph similarity. Graph kernels are widely
studied since they allow kernel-based machine learning algorithms such as SVMs
to be applied directly to graph-structured data. Most graph kernels are based
on the Weisfeiler-Lehman test of graph isomorphism. Indeed, we employ the
popular Weisfeiler-Lehman subtree kernel algorithm to obtain the whole-graph
feature vector. Once a feature vector for the graph is obtained, we can compute
a pairwise kernel matrix and train an SVM for malware classification.

Let the Weisfeiler-Lehman kernel with base kernel k be defined as

K
(h)
WL(G,G′) =

h∑
i=0

αik(Gi, G
′
i)

where {G0, G1, ..., Gh} and {G′0, G′1, ..., G′h} are sequences of graphs that
the Weisfeiler-Lehman algorithm generates from G and G′ respectively after h
iterations. For each iteration of the Weisfeiler-Lehman algorithm, each vertex
obtains a new label by concatenating the labels of the adjacent vertices. This
process is illustrated for one iteration of the algorithm in Figure 5. The Weisfeiler-
Lehman kernel, then, is simply the weighted sum of the base kernel function
applied to the graphs generated by the Weisfeiler-Lehman algorithm. Let the
subtree base kernel k be defined as the inner product between φ(G) and φ(G′)

k(G,G′) = 〈φ(G), φ(G′)〉

where φ(Q) = [c(Q, σ0), c(Q, σ1), ..., c(Q, σs)] and c(Q, σi) is the count of
vertex label σi ∈ Σ(h) occurring in the graph Q. The set of vertex labels obtained
after h iterations of the Weisfeiler-Lehman algorithm is denoted as Σ(h). To
compute the kernel matrix, we compute the pairwise kernels for all graphs as

K(h) =


k(h)(G1, G1) . . . k(h)(G1, GN )
k(h)(G2, G1) . . . k(h)(G2, GN )

...
. . .

...
k(h)(GN , G1) . . . k(h)(GN , GN )


Shervashidze, et al (2011) have shown that for N graphs with n vertices and

m edges, the Weisfeiler-Lehman subtree kernel of height h can be computed in
O(Nhm + N2hn) time. This kernel matrix can be supplied directly to a one-
versus-all support vector machine with Platt scaling in order to obtain the class
probabilities [17].



4 Experiments

4.1 Setup

We performed three separate end-to-end experiments of our malware classifier
system which is composed of the individually trained components below. Each
component feeds into the next to form the final multiclass classifier system.

– Sequence-to-sequence autoencoder model
– K-means clustering model
– Weisfeiler-Lehman subtree kernel model

Table 1. Malware descriptions

Family Name Samples Type

Ramnit 1263 Worm
Lollipop 2306 Adware
Kelihos ver3 2931 Backdoor
Vundo 344 Trojan
Simda 33 Backdoor
Tracur 663 TrojanDownloader
Kelihos ver1 382 Backdoor
Obfuscator.ACY 1158 Obfuscated Malware
Gatak 954 Backdoor

Ten percent of the original data set was withheld from training altogether,
not seen by any of the individual sub-models and was used only for testing the
composite classifier models. Ten percent of the training set was used for validation.
Deep learning library Keras [4] was used to construct and train the sequence-
to-sequence network. The network was trained on an NVIDIA Tesla K80 GPU.
We used the GraKeL [22] implementation of the Weisfeiler-Lehman algorithm
with three iterations to obtain the Weisfeiler-Lehman graphs and the kernel
matrix. The scikit-learn [15] implementation for support vector machines based
on LIBSVM [2] was used for the graph classification task with hyperparameters
C and γ being obtained through grid search.

4.2 Data Set

We use the Microsoft Malware Classification data set [18] to evaluate our approach.
The data set consists of samples from nine different malware families. Each sample
in the data set is composed of a pre-disassembled .asm file generated by IDA and
a sanitized hexadecimal representation of the original executable. Our approach
makes use of only the .asm and furthermore only takes advantage of the parsable
code sections. Having obtained only the publicly available training set of 10,867
samples, we were able to extract function call graphs for 10,152 samples due, in
part, to certain samples being packed or otherwise obfuscated.



Table 2. Results summary

Family Name Precision Recall F1-Score TP FP FN TN Support

Ramnit 0.970 0.995 0.982 382 12 2 2682 384
Lollipop 0.997 1.000 0.998 708 2 0 2358 708
Kelihos ver3 1.000 1.000 1.000 861 0 0 2205 861
Vundo 0.989 1.000 0.994 93 1 0 2973 93
Simda 1.000 1.000 1.000 15 0 0 3051 15
Tracur 0.984 1.000 0.992 180 3 0 2886 180
Kelihos ver1 1.000 0.967 0.983 87 0 3 2979 90
Obfuscator.ACY 1.000 0.974 0.987 368 0 10 2698 378
Gatak 1.000 0.992 0.996 354 0 3 2712 357

4.3 Results

We achieved a prediction accuracy of 99.41% in the malware family classification
task. Our approach outperforms other malware classifiers that involve extensive
feature engineering or extract significantly more data from the executable such
as non-code data [8,9,20]. Since we only use the code sections of the executable,
we expect that incorporating additional data such as the .rsrc and .idata

sections would help to further improve classification results. Table 2 summarizes
the results across the three experiments.

5 Conclusion

In this work we applied several machine learning techniques to the problem of
malware detection and achieved over 99% accuracy in the malware classification
task using a composite model. A sequence-to-sequence autoencoder was used to
obtain dense, latent representations of x86 code which helped our model account
for anti-malware evasion practices. We then clustered the function representations
of the functions and obtained discrete function labels. Using the discrete labels,
we constructed a function call graph where vertices represent functions and
are labeled according to their cluster IDs. The Weisfeiler-Lehman graph kernel
framework was used to obtain the Weisfeiler-Lehman graphs and to construct
a kernel matrix which allowed us to ultimately perform the graph classification
task using a support vector machine.
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