Skip to main content

Double-Threshold Models for Network Influence Propagation

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12575))

Included in the following conference series:

  • 1404 Accesses

Abstract

We consider new models of activation/influence propagation in networks based on the concept of double thresholds: a node will “activate” if at least a certain minimum fraction of its neighbors are active and no more than a certain maximum fraction of neighbors are active. These models are more flexible than standard threshold models as they allow to incorporate more complex dynamics of diffusion processes when nodes can activate and deactivate, which have possible interpretations, for instance, in the context of communication and social networks. In a social network, consistently with the hypothesis originally mentioned by Granovetter (1978), a person may “activate” (e.g., adopt and/or repost an opinion) if sufficiently many but not too many of their friends (i.e., neighbors in a network) have adopted this opinion. We study several versions of this problem setup under different assumptions on activation/deactivation mechanisms and initial choices of seed nodes, and compare the results to the well-known “single threshold” (e.g., linear threshold) models.

This material is based on work supported by the AFRL Mathematical Modeling and Optimization Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Banerjee, S., Jenamani, M., Pratihar, D.K.: A survey on influence maximization in a social network. Knowl. Inf. Syst. 62, 1–39 (2020)

    Article  Google Scholar 

  2. Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Natl. Acad. Sci. 113(44), 12368–12373 (2016)

    Article  Google Scholar 

  3. Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C., Zhou, T.: Identifying influential nodes in complex networks. Phys. A: Stat. Mech. Appl. 391(4), 1777–1787 (2012)

    Article  Google Scholar 

  4. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2009) (June 2009)

    Google Scholar 

  5. Clusella, P., Grassberger, P., Pérez-Reche, F., Politi, A.: Immunization and targeted destruction of networks using explosive percolation. Phys. Rev. Lett. 117(20), 208301 (2016)

    Article  Google Scholar 

  6. Erkol, Ş., Castellano, C., Radicchi, F.: Systematic comparison between methods for the detection of influential spreaders in complex networks. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  7. Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  8. Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42(2), 17–28 (2013)

    Article  Google Scholar 

  9. Im, Y.S., Kahng, B.: Dismantling efficiency and network fractality. Phys. Rev. E 98, 012316 (2018)

    Article  Google Scholar 

  10. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146. ACM, New York (2003)

    Google Scholar 

  11. Kitsak, M., et al.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888–893 (2010)

    Article  Google Scholar 

  12. Li, Y., Fan, J., Wang, Y., Tan, K.-L.: Influence maximization on social graphs: a survey. IEEE Trans. Knowl. Data Eng. 30(10), 1852–1872 (2018)

    Article  Google Scholar 

  13. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65–68 (2015)

    Article  Google Scholar 

  14. Pan, T., Li, X., Kuhnle, A., Thai, M.T.: Influence diffusion in online social networks with propagation rate changes. IEEE Trans. Netw. Sci. Eng. 1 (2020)

    Google Scholar 

  15. Pei, S., Muchnik, L., Andrade Jr., J.S., Zheng, Z., Makse, H.A.: Searching for superspreaders of information in real-world social media. Sci. Rep. 4(1), 5547 (2014)

    Article  Google Scholar 

  16. Radicchi, F., Castellano, C.: Fundamental difference between superblockers and superspreaders in networks. Phys. Rev. E 95, 012318 (2017)

    Article  Google Scholar 

  17. Samadi, M., Nikolaev, A., Nagi, R.: A subjective evidence model for influence maximization in social networks. Omega 59, 263–278 (2016)

    Article  Google Scholar 

  18. Schelling, T.C.: Micromotives and Macrobehavior. WW Norton & Company, New York (2006)

    Google Scholar 

  19. Semenov, A., Veremyev, A., Nikolaev, A., Pasiliao, E.L., Boginski, V.: Network-based indices of individual and collective advising impacts in mathematics. Comput. Soc. Netw. 7(1), 1–18 (2020). https://doi.org/10.1186/s40649-019-0075-0

    Article  Google Scholar 

  20. Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., Guo, R.: The independent cascade and linear threshold models. Diffusion in Social Networks. SCS, pp. 35–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23105-1_4

    Chapter  MATH  Google Scholar 

  21. Zdeborová, L., Zhang, P., Zhou, H.-J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6(1), 37954 (2016)

    Article  Google Scholar 

  22. Zhang, H., Mishra, S., Thai, M.T., Wu, J., Wang, Y.: Recent advances in information diffusion and influence maximization in complex social networks. Oppor. Mob. Soc. Netw. 37(1.1), 37 (2014)

    Article  Google Scholar 

  23. Zhou, F., Lü, L., Mariani, M.S.: Fast influencers in complex networks. Commun. Nonlinear Sci. Numer. Simul. 74, 69–83 (2019)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Boginski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Semenov, A., Veremyev, A., Pasiliao, E.L., Boginski, V. (2020). Double-Threshold Models for Network Influence Propagation. In: Chellappan, S., Choo, KK.R., Phan, N. (eds) Computational Data and Social Networks. CSoNet 2020. Lecture Notes in Computer Science(), vol 12575. Springer, Cham. https://doi.org/10.1007/978-3-030-66046-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66046-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66045-1

  • Online ISBN: 978-3-030-66046-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics