Skip to main content

Recognition of Affective and Grammatical Facial Expressions: A Study for Brazilian Sign Language

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

Individuals with hearing impairment typically face difficulties in communicating with hearing individuals and during the acquisition of reading and writing skills. Widely adopted by the deaf, Sign Language (SL) has a grammatical structure where facial expressions assume grammatical and affective functions, differentiate lexical items, participate in syntactic construction, and contribute to intensification processes. Automatic Sign Language Recognition (ASLR) technology supports the communication between deaf and hearing individuals, translating sign language gestures into written or spoken sentences of a target language. The recognition of facial expressions can improve ASLR accuracy rates. There are cases where the absence of a facial expression can create wrong translations, making them necessary for the understanding of sign language. This paper presents an approach to facial recognition for sign language. Brazilian Sign Language (Libras) is used as a case study. In our approach, we code Libras’ facial expression using the Facial Action Coding System (FACS). In the paper, we evaluate two convolutional neural networks, a standard CNN and hybrid CNN+LSTM, for AU recognition. We evaluate the models on a challenging real-world video dataset of facial expressions in Libras. The results obtained were 0.87 f1-score average and indicated the potential of the system to recognize Libras’ facial expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antonakos, E., Roussos, A., Zafeiriou, S.: A survey on mouth modeling and analysis for sign language recognition. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 1, pp. 1–7. IEEE (2015)

    Google Scholar 

  2. Baltrusaitis, T., Zadeh, A., Lim, Y.C., Morency, L.P.: Openface 2.0: facial behavior analysis toolkit. In: 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp. 59–66. IEEE (2018)

    Google Scholar 

  3. Benitez-Quiroz, C.F., Srinivasan, R., Feng, Q., Wang, Y., Martinez, A.M.: Emotionet challenge: Recognition of facial expressions of emotion in the wild (2017)

    Google Scholar 

  4. Chollet, F., et al.: Keras: The python deep learning library. Astrophysics Source Code Library (2018)

    Google Scholar 

  5. Chu, W.S., De la Torre, F., Cohn, J.F.: Modeling spatial and temporal cues for multi-label facial action unit detection. arXiv preprint arXiv:1608.00911 (2016)

  6. Chu, W.S., De la Torre, F., Cohn, J.F.: Learning spatial and temporal cues for multi-label facial action unit detection. In: 2017 12th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017), pp. 25–32. IEEE (2017)

    Google Scholar 

  7. Chu, W.S., De la Torre, F., Cohn, J.F.: Learning facial action units with spatiotemporal cues and multi-label sampling. Image Vis. Comput. 81, 1–14 (2019)

    Article  Google Scholar 

  8. Ekman, P.: Facial expression and emotion. Am. Psychol. 48(4), 384 (1993)

    Article  Google Scholar 

  9. Ekman, P., Friesen, W.V.: Manual for the facial action coding system. Consulting Psychologists Press (1978)

    Google Scholar 

  10. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)

    Article  Google Scholar 

  11. Felipe, T.A.: The verbalvisual discourse in Brazilian sign language-libras. Bakhtiniana: Revista de Estudos do Discurso, 8(2) (2013)

    Google Scholar 

  12. Fleiss, J.L., Cohen, J.: The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educ. Psychol. Meas. 33(3), 613–619 (1973)

    Article  Google Scholar 

  13. Freitas, F.A., Peres, S.M., Lima, C.A., Barbosa, F.V.: Grammatical facial expression recognition in sign language discourse: a study at the syntax level. Inf. Syst. Front. 19(6), 1243–1259 (2017)

    Article  Google Scholar 

  14. Freitas, F.A., Peres, S.M., de Moraes Lima, C.A., Barbosa, F.V.: Grammatical facial expressions recognition with machine learning. In: FLAIRS Conference (2014)

    Google Scholar 

  15. Gudi, A., Tasli, H.E., Den Uyl, T.M., Maroulis, A.: Deep learning based facs action unit occurrence and intensity estimation. In: 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), vol. 6, pp. 1–5. IEEE (2015)

    Google Scholar 

  16. Hamm, J., Kohler, C.G., Gur, R.C., Verma, R.: Automated facial action coding system for dynamic analysis of facial expressions in neuropsychiatric disorders. J. Neurosci. Methods 200(2), 237–256 (2011)

    Article  Google Scholar 

  17. Han, S., Meng, Z., Li, Z., O’Reilly, J., Cai, J., Wang, X., Tong, Y.: Optimizing filter size in convolutional neural networks for facial action unit recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5070–5078 (2018)

    Google Scholar 

  18. Hao, L., Wang, S., Peng, G., Ji, Q.: Facial action unit recognition augmented by their dependencies. In: 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2018), pp. 187–194. IEEE (2018)

    Google Scholar 

  19. Hosie, J., Gray, C., Russell, P., Scott, C., Hunter, N.: The matching of facial expressions by deaf and hearing children and their production and comprehension of emotion labels. Motiv. Emot. 22(4), 293–313 (1998)

    Article  Google Scholar 

  20. Kanade, T., Tian, Y., Cohn, J.F.: Comprehensive database for facial expression analysis. In: fg, p. 46. IEEE (2000)

    Google Scholar 

  21. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–1758 (2009)

    Google Scholar 

  22. Koelstra, S., Pantic, M., Patras, I.: A dynamic texture-based approach to recognition of facial actions and their temporal models. IEEE Trans. Pattern Analy. Mach. Intell. 32(11), 1940–1954 (2010)

    Article  Google Scholar 

  23. Kolod, E.: How does learning sign language affect perception. Intel Science Talent Search, pp. 1–20 (2004)

    Google Scholar 

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Li, S., Deng, W.: Deep facial expression recognition: A survey. arXiv preprint arXiv:1804.08348 (2018)

  26. Li, W., Abtahi, F., Zhu, Z.: Action unit detection with region adaptation, multi-labeling learning and optimal temporal fusing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1841–1850 (2017)

    Google Scholar 

  27. Li, W., Abtahi, F., Zhu, Z., Yin, L.: Eac-net: A region-based deep enhancing and cropping approach for facial action unit detection. arXiv preprint arXiv:1702.02925 (2017)

  28. Liddell, S.K.: American sign language syntax, vol. 52. Mouton De Gruyter (1980)

    Google Scholar 

  29. Linh Tran, D., et al.: Deepcoder: Semi-parametric variational autoencoders for automatic facial action coding. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3190–3199 (2017)

    Google Scholar 

  30. Littlewort, G.C., Bartlett, M.S., Lee, K.: Automatic coding of facial expressions displayed during posed and genuine pain. Image Vis. Comput. 27(12), 1797–1803 (2009)

    Article  Google Scholar 

  31. Liu, M., Shan, S., Wang, R., Chen, X.: Learning expressionlets on spatio-temporal manifold for dynamic facial expression recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1749–1756 (2014)

    Google Scholar 

  32. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended cohn-kanade dataset (ck+): A complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 94–101. IEEE (2010)

    Google Scholar 

  33. Ma, C., Chen, L., Yong, J.: Au R-CNN: encoding expert prior knowledge into R-CNN for action unit detection. Neurocomputing 355, 35–47 (2019)

    Article  Google Scholar 

  34. Majumder, A., Behera, L., Subramanian, V.K.: Automatic facial expression recognition system using deep network-based data fusion. IEEE Trans. Cybern. 48(1), 103–114 (2018)

    Article  Google Scholar 

  35. Martinez, B., Valstar, M.F., Jiang, B., Pantic, M.: Automatic analysis of facial actions: a survey. IEEE Trans. Affect. Comput. (2017)

    Google Scholar 

  36. Mavadati, M., Sanger, P., Mahoor, M.H.: Extended disfa dataset: investigating posed and spontaneous facial expressions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2016)

    Google Scholar 

  37. Mavadati, S.M., Mahoor, M.H., Bartlett, K., Trinh, P., Cohn, J.F.: Disfa: a spontaneous facial action intensity database. IEEE Trans. Affect. Comput. 4(2), 151–160 (2013)

    Article  Google Scholar 

  38. Mei, C., Jiang, F., Shen, R., Hu, Q.: Region and temporal dependency fusion for multi-label action unit detection. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 848–853. IEEE (2018)

    Google Scholar 

  39. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)

    Google Scholar 

  40. Ong, S.C., Ranganath, S.: Automatic sign language analysis: a survey and the future beyond lexical meaning. IEEE Trans. Pattern Anal. Mach. Intell. 6, 873–891 (2005)

    Article  Google Scholar 

  41. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  42. Peterson, C.C., Siegal, M.: Deafness, conversation and theory of mind. J. Child Psychol. Psychiatry 36(3), 459–474 (1995)

    Article  Google Scholar 

  43. Pigou, L., Dieleman, S., Kindermans, P.-J., Schrauwen, B.: Sign language recognition using convolutional neural networks. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8925, pp. 572–578. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16178-5_40

    Chapter  Google Scholar 

  44. Pramerdorfer, C., Kampel, M.: Facial expression recognition using convolutional neural networks: state of the art. arXiv preprint arXiv:1612.02903 (2016)

  45. Romero, A., León, J., Arbeláez, P.: Multi-view dynamic facial action unit detection. Image Vis. Comput. (2018)

    Google Scholar 

  46. Sanchez, E., Tzimiropoulos, G., Valstar, M.: Joint action unit localisation and intensity estimation through heatmap regression. arXiv preprint arXiv:1805.03487 (2018)

  47. Sariyanidi, E., Gunes, H., Cavallaro, A.: Automatic analysis of facial affect: a survey of registration, representation, and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1113–1133 (2015)

    Article  Google Scholar 

  48. Savran, A., Sankur, B., Bilge, M.T.: Regression-based intensity estimation of facial action units. Image Vis. Comput. 30(10), 774–784 (2012)

    Article  Google Scholar 

  49. Silva, E., Costa, P., Kumada, K., De Martino, J.M.: Silfa: Sign language facial action database for the development of assistive technologies for the deaf. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020)(FG), pp. 382–386 (2020)

    Google Scholar 

  50. Silva, E.P., Costa, P.D.P.: Recognition of non-manual expressions in Brazilian sign language. In: 12th IEEE International Conference on Automatic Face and Gesture Recognition. Doctoral Consortium. IEEE (2017)

    Google Scholar 

  51. da Silva, E.P., Costa, P.D.P.: Qlibras: A novel database for grammatical facial expressions in Brazilian sign language. In: X Encontro de Alunos e Docentes do DCA/FEEC/UNICAMP (EADCA) (2017)

    Google Scholar 

  52. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: Null, p. 958. IEEE (2003)

    Google Scholar 

  53. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  54. Yauri Vidalón, J.E., De Martino, J.M.: Brazilian sign language recognition using kinect. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 391–402. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_27

    Chapter  Google Scholar 

  55. Von Agris, U., Knorr, M., Kraiss, K.F.: The significance of facial features for automatic sign language recognition. In: 8th IEEE International Conference on Automatic Face and Gesture Recognition. FG 2008, pp. 1–6. IEEE (2008)

    Google Scholar 

  56. Vural, E., Cetin, M., Ercil, A., Littlewort, G., Bartlett, M., Movellan, J.: Drowsy driver detection through facial movement analysis. In: Lew, M., Sebe, N., Huang, T.S., Bakker, E.M. (eds.) HCI 2007. LNCS, vol. 4796, pp. 6–18. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75773-3_2

    Chapter  Google Scholar 

  57. Walecki, R., Rudovic, O., Pavlovic, V., Schuller, B., Pantic, M.: Deep structured learning for facial action unit intensity estimation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5709–5718. IEEE (2017)

    Google Scholar 

  58. Wang, S., Hao, L., Ji, Q.: Facial action unit recognition and intensity estimation enhanced through label dependencies. IEEE Trans. Image Process. (2018)

    Google Scholar 

  59. Wu, B.F., Lin, C.H.: Adaptive feature mapping for customizing deep learning based facial expression recognition model. IEEE Access 6, 12451–12461 (2018)

    Article  Google Scholar 

  60. Yabunaka, K., Mori, Y., Toyonaga, M.: Facial expression sequence recognition for a japanese sign language training system. In: 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS), pp. 1348–1353. IEEE (2018)

    Google Scholar 

  61. Zafrulla, Z., Brashear, H., Starner, T., Hamilton, H., Presti, P.: American sign language recognition with the kinect. In: Proceedings of the 13th International Conference on Multimodal Interfaces, pp. 279–286. ACM (2011)

    Google Scholar 

  62. Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2018)

    Article  Google Scholar 

  63. Zhang, K., Huang, Y., Du, Y., Wang, L.: Facial expression recognition based on deep evolutional spatial-temporal networks. IEEE Trans. Image Process. 26(9), 4193–4203 (2017)

    Article  MathSciNet  Google Scholar 

  64. Zhang, Y., Dong, W., Hu, B.G., Ji, Q.: Classifier learning with prior probabilities for facial action unit recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5108–5116 (2018)

    Google Scholar 

  65. Zhao, K., Chu, W.S., Martinez, A.M.: Learning facial action units from web images with scalable weakly supervised clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2090–2099 (2018)

    Google Scholar 

  66. Zhao, K., Chu, W.S., De la Torre, F., Cohn, J.F., Zhang, H.: Joint patch and multi-label learning for facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2207–2216 (2015)

    Google Scholar 

  67. Zhao, K., Chu, W.S., Zhang, H.: Deep region and multi-label learning for facial action unit detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3391–3399 (2016)

    Google Scholar 

  68. Zhi, R., Liu, M., Zhang, D.: A comprehensive survey on automatic facial action unit analysis. Vis. Comput., 1–27 (2019)

    Google Scholar 

Download references

Acknowledgement

This paper and the research behind was financially supported by the Coordination for the Improvement of Higher Education Personnel (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emely Pujólli da Silva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, E.P., Costa, P.D.P., Kumada, K.M.O., De Martino, J.M., Florentino, G.A. (2020). Recognition of Affective and Grammatical Facial Expressions: A Study for Brazilian Sign Language. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12536. Springer, Cham. https://doi.org/10.1007/978-3-030-66096-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66096-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66095-6

  • Online ISBN: 978-3-030-66096-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics