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Abstract

Most PoW blockchain protocols operate with a simple mechanism
whereby a threshold is set for each block and miners generate block hashes
until one of those values falls below the threshold. Although largely ef-
fective, this mechanism produces blocks at a highly variable rate and also
leaves a blockchain susceptible to chain death, i.e. abandonment in the
event that the threshold is set too high to attract any miners. A recent
innovation called real-time block rate targeting, or RTT, fixes these prob-
lems by reducing the target throughout the mining interval. RTT exhibits
much less variable block times and even features the ability to fully adjust
the target after each block. However, as we show in this paper, RTT also
suffers from a critical vulnerability whereby miners deviate form the pro-
tocol to increase their profits. We introduce the Radium protocol, which
mitigates this vulnerability in RTT while retaining lower variance block
times, responsive target adjustment, and lowering the risk of chain death.
We also show that Radium’s susceptibility to the doublespend attack and
orphaned blocks remains similar to Bitcoin.

1 Introduction

To date, the most popular consensus mechanism for public blockchains is proof-
of-work (PoW) [7]. Under PoW, a blockchain (or simply chain) is secured by
compelling participants to provide evidence of wasted computation or work.
Every unit of work boosts a participant’s odds of deciding the content of the
next block. If any one individual or group controls the majority of work, then
they are capable of deciding the majority of blocks, and it is possible for them to
rewrite an arbitrarily long portion of the chain and censor future transactions.
Indeed, even if one mining group produces only a significant fraction of the work,
then it is still possible for them to rewrite short portions of the blockchain with
relatively high probability. This allows for the group to reverse transactions, an
activity known as doublespending [7, 11]. For this reason, blockchain security
is intimately tied to the aggregate work required to produce a block. The most
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popular PoW blockchains have attracted a large number of participants, who
collectively expend a great deal of work. Maintaining a consistent level of work
is critical both to maintaining attack protection as well as a stable block time.

A specific kind of work is required for each blockchain, which we call its
PoW algorithm. Typically, specialized hardware called an application specific
integrated circuit (ASIC) is required for producing work relevant to a given
PoW algorithm. As a result, it is common for multiple Blockchains to occupy
the same PoW market where they compete for security. In order to attract
participants to expend work, blockchains offer a subsidy for blocks produced.
Recent research (Kwon et al. [5] and Bissias et al. [3]) has shown that the relative
fiat exchange value of these subsidies, across blockchains in the same market,
determines the distribution of work. The end result is that participants will
frequently shift their work from one chain to another as the value of rewards
fluctuate. These fluctuations can be devastating to minority work chains that
can experience huge changes in aggregate work in relative terms. In the worst
case, a drastic drop in the fiat exchange value for a minority work chain can
remove all incentive for miners to allocate it any work. This causes what is
called a chain death spiral [9].

In this paper, we analyze a recently introduced protocol called real-time
block rate targeting, or RTT [4], whose intended purpose is improve responsive-
ness to changes in hash rate. We show that RTT currently suffers from a vul-
nerability due to misaligned miner incentives. We then describe a modification
to the RTT protocol, which we call Radium, which fixes this problem. Radium
retains the benefits of RTT including lower variance block times, a more re-
sponsive difficulty adjustment algorithm (DAA), and prevention of chain death.
Not previously studied in the RTT paper, we also show that Radium maintains
orphan rate and doublespend attack prevention similar to Bitcoin.

2 Background and Related Work

Under PoW, miners repeatedly perturb and hash the block header with fre-
quency h, which is called the hash rate. Miners hope to hash a value that falls
below a protocol-defined target G. When such a value is found, the block is
added to the blockchain and the miner receives coins as a reward. Thus coin is-
suance is tied to block discovery, and so the protocol must adjust G periodically
in order to maintain a steady rate of inflation. Closely related to the target and
hash rate is difficulty D, which was shown by Ozisik et al. [8] to be equivalent
to the expected number of hashes required to mine a single block whose hash
falls below G. The authors further showed that D = S/G where S is the size of
the hash space. Accordingly, one can equivalently adjust the target by creating
an inverse change in difficulty. Indeed, all of the most popular PoW blockchains
employ some form of difficulty adjustment algorithm or DAA.
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2.1 Difficulty adjustment

Currently, all DAAs that we are aware of implement a feedback controller, which
first forms a statistical estimate of recent hash rates by observing previous block
times and then adjusts the difficulty so as to achieve a target block time T .
When the difficulty is tuned so that the target block time is achieved, we say
that the DAA is at rest. For example, every 2016 blocks, Bitcoin (BTC) scales
the current difficulty according to

D′ = DT /T , (1)

where T is the average actual block time over the previous 2016 blocks. This
simple DAA works fairly well for BTC primarily because the blockchain en-
joys more than 90% of the total available SHA256 hash rate. However, for
blockchains with a small fraction of the available hash rate, such as Bitcoin
Cash (BCH), simple feedback controllers is inadequate [12].

2.2 Conventional PoW mining

The distribution of block inter-arrival time under conventional PoW is Expon(λ)
where 1

λ = T , the target block time (see Rizun [10] and Ozisik et al. [8]). And,
as described above,

D = S/G, (2)

where D is the expected number of hashes required to mine a block, G is the
target, and S is the size of the hash space. For fixed hash rate h we have by
definition

H = hE[T ], (3)

where T and H are the actual block time and hashes per block, respectively. In
particular, this implies that

D = hT , (4)

when the DAA is at rest.

2.3 RTT mining

Stone [12] was perhaps the first to suggest the notion of increasing the mining
target during a single block interval in order to compensate for statistical tail
events or a sudden loss of hash rate. Recently, Harding [4] introduced a new
PoW consensus mechanism called RTT that leverages this idea. When mining a
given block, instead of using a fixed target G, RTT varies the target as a function
of the time since the last block. This small change is significant because it alters
the statistics of the mining process.

Define the instantaneous mining rate, or expected blocks mined per second,
for RTT as

λ(t) = atk−1, (5)
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with security constant k and tuning constant a. Variable t represents the elapsed
time since the last block. Let T be a random variable corresponding to the block
inter-arrival time. Harding shows that, given instantaneous mining rate λ(t),

T ∼ Weibull(k, a), (6)

where T has density function

f(t; k, a) = atk−1e−at
k/k, (7)

distribution function
F (t; k, a) = 1− e−at

k/k, (8)

and expected value

E[T ] =

(
k

a

)1/k

Γ

(
1 +

1

k

)
. (9)

From Equation 9, it is evident that, when targeting a block in expected time T ,
the constant a should be defined as

a = k

[
Γ
(
1 + 1

k

)
T

]k
(10)

RTT is designed to maintain compatibility with Bitcoin, which requires RTT
to maintain conventional mining targets on the blockchain: Gi for each block
i. This has the primary benefit of maintaining blockchain continuity before and
after upgrade and the ancillary benefit of allowing for conventional difficulty
adjustment. From conventional target Gi and instantaneous mining rate λi(t),
RTT requires a subtarget gn(t) such that the expected mining time for RTT
under gn(t) is equal to target mining time T . To mine block i, miners must find
a block at some elapsed time t whose hash falls below gi(t).

Under conventional PoW, Gi implies an instantaneous block mining rate of

λ = 1/T (11)

blocks per second. Accordingly, the sub-target gi(t) is defined as

gi(t) = Gi
λi(t)

λ
, (12)

which can be interpreted as normalizing Gn according to the variable block
production rate of RTT.

3 Future Mining Attack on RTT

In this section we describe a future mining attack on RTT. Miner A, having
fraction q of the total hash rate, chooses a future time t∗ and allocates all of
his hash rate to finding a block that meets sub-target g(t∗) until t∗ has expired.
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There are three mutually exclusive outcomes: (i) A mines a block prior to t∗;
(ii) the remaining miners M , having fraction 1−q of the hash rate, mine a block
prior t∗; or (iii) a block is first mined after t∗. For outcome (iii), we assume
that A will revert to protocol-compliant mining, i.e. A will mine to actual time
t provided that t ≥ t∗. In this section we identify a value of t∗ such that the
probability of A mining a block before M exceeds q, which is his fair share.

3.1 Attacker expected block time

Let TA and TM denote statistics corresponding to the time required for A and
M , respectively, to mine their next blocks. And let p(t∗) denote the probability
that A mines a block before M when his future mining time is t∗. Note that

p(t∗) ≥ P (TA < t∗, TM > t∗) = P (TA < t∗)P (TM > t∗). (13)

Because A mines with a fixed target g(t∗) for each block, TA is exponentially
distributed (as described in Section 2).

It is apparent from Equations 2–4 that if D is initially tuned for hash rate
h and target G, but all miners instead mine according to the sub-target at time
t∗, then they would expect a block to arrive in time

E[T ] =
S

hg(t∗)
=

G

g(t∗)

S

hG
=

G

g(t∗)
T . (14)

For miner A, the expected block time is scaled by his fraction of the total
hash rate q. Therefore, the expected block time for A is given by

E[TA] =
S

qhg(t∗)
=

G

qg(t∗)

S

hG
=

G

qg(t∗)
T . (15)

3.2 Compliant expected block time

From the discussion in Section 2.3, it is clear that TM has Weibull distribution
since miners M are assumed to be compliant. But they are missing fraction q of
the hash rate, which we must account for in determining their expected mining
time. It is difficult to reason directly about how Weibull mining time changes
with a loss of hash rate, but straightforward to reason about the effect of such
a change under conventional PoW.

Let T ′M be a random variable representing the mining time for miners M
having fraction p = 1− q of the total hash rate under the assumption that they
use conventional PoW, i.e. mining to fixed target G for each block. Reasoning
similarly to Equation 15, we have

E[T ′M ] =
S

phG
=

1

p

S

hG
=
T
p
. (16)

Target G is a conventional PoW target, so we reason that mining in RTT with
fraction p of the total hash rate is equivalent to all miners mining against initial
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Figure 1: Probability of successful future mining attack for various attacker shares of total
hash rate (each curve) and future mining times (independent axis). Solid curves indicate
theoretical probabilities and dashed curves indicate the results of a mining simulation with
500 trials per point, per curve.

target pG. The sub-target is related to G by g(t) = Gλ(t)/λ. This implies that
a sub-target adjusted for hash rate p would be

gM (t) = pG
λ(t)

λ
= G

pλ(t)

λ
= G

patk−1

λ
= G

λM (t)

λ
, (17)

where λM (t) = patk−1. Thus, according to Equations 5 and 6,

TM ∼ Weibull(k, pa). (18)

Finally, we can produce the bound for p(t∗) in Equation 13 by multiplying the
CDF for TA, evaluated at t∗ by the inverse-CDF for TM , evaluated at t∗.

Figure 1 shows the associated probability of mining a block when future
mining for many possible future times t∗. Each curve corresponds to a different
fraction of the total hash rate for A. Solid lines are those predicted by the bound
in Equation 13 and dashed lines are the results of a mining simulation. The plot
shows that for each hash rate, there exists a regime of values for t∗ where the
probability of mining a block is greater than the fair probability (equivalent to
A’s share of the hash rate).

4 Defacto Future Mining in RTT

In Section 3 we showed that the RTT protocol is vulnerable to future mining.
This attack arrises because miners are incentivized to mine to a fixed target in
the future rather than adhere to the dynamic target established by the protocol.
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Therefore it seems that future mining is inevitable in RTT. Yet it seems possible
that RTT could still be fair for all miners if they all future mine so as to maximize
their individual profit. In this section, we show that there is a unique Nash
equilibrium future mining time τ , depending on the chain’s profitability relative
to other chains, to which all miners will mine. Once this time expires, the Nash
equilibrium behavior is to mine according to the compliant RTT sub-target.

4.1 Block preemption

Future mining involves mining to a target g(t∗) corresponding to a future time
t∗. Because it is a probabilistic process, the miner will fail to mine a block in
time t∗ with some frequency. At this point, he must choose a new time t∗|t,
given that t seconds have passed. This process continues until a block is mined.

There exists a risk / reward tradeoff in future mining related to the fact that
a miner cannot release a block mined at a future time until that time arrives.
Thus, if miner M mines to future time t∗, then the remaining miners M− can
mine to time t∗− ε, ε > 0, and all blocks mined by M can be preempted by any
block mined by M− prior to t∗. We call this process block preemption.

4.2 Game theoretical results

4.2.1 Assumptions

In our game theoretical model, we assume all miners follow a strategy where
they will future mine whenever it is possible to do so without being preempted.

Miners typically have a choice where they direct their hash rate. Let r
denote the (fixed) prevailing reward rate, which is the amount of fiat that can
be gained per hash when miners mine on a competing blockchain. Furthermore,
let R(t∗) denote the reward rate when future mining to time t∗ on the RTT
chain. We assume that a rational miner will choose to direct all of his hash
rate to a competing chain whenever R(t∗) < r. Thus, we imagine that miners
choose t∗ so as to maximize R(t∗). We begin with the following result showing
that the Nash equilibrium for t∗ as a function of r.

THEOREM 1: There exists a unique Nash equilibrium for initial future
mining time t∗ = τ , where R(τ) = r.

PROOF: Consider the best response t∗(M) for miner M given a known choice
for t∗(M−) > τ for the remaining miners M−. By choosing t∗(M) = t(M−)∗ −
ε, for an infinitesimally small ε > 0, M can be certain that his blocks will
preempt those of M− (ignoring block propagation delay). Moreover, M mines
at effectively the same difficulty as M− for each t(M)∗. Therefore, the expected
profit per hash for M is strictly superior to that of M−. Now consider the
best response for M when M− chooses t(M−)∗ = τ . If M chooses to mine to
time τ − ε, then he will be mining at a loss relative to prevailing reward rate
r. On the other hand, if M mines to future time τ + ε, then his blocks will be

7



preempted by any blocks mined by M−. Therefore, the best response for M is
also to future mine to time τ . It follows that τ is a Nash equilibrium for t∗.

2

Having established an equilibrium for the first future mining time, we turn
now to subsequent times, which will be targeted in the event that no block is
found by time t∗ = τ . Somewhat surprisingly, the Nash equilibrium for t∗|t
turns out to be equal to the current time t itself.

THEOREM 2: For any t > τ , t∗|t = t is a unique Nash equilibrium.

PROOF: Consider the best response for miner M given that M− is mining to
time t∗(M−)|t = t, when t > τ . M certainly wishes to mine on the RTT chain
since R(t) > r for t > τ . But because t is not in the future, it is not possible
for M to mine to a slightly earlier time. And if M was to mine to a future
time t + ε, for ε > 0, then it would be possible for his blocks to be preempted.
Therefore, the best response for M is to also mine to t∗(M)|t = t. It follows
that t∗|t = t is a Nash equilibrium.

2

Together, Theorems 1 and 2 show that all RTT miners will future mine
to time τ until the actual time t exceeds τ at which point they will revert to
(compliant) mining against target g(t). There are three major issues with this
behavior. First, at time τ , there is a significant chance that multiple miners
will have already future mined a block, creating a block race and, inevitably,
a higher block orphan rate. Second, suppose that on average fraction α of the
total hash rate is devoted by all miners to future mining to τ , with the remaining
1− α being devoted to mining via dynamic target after τ . By future mining to
τ − ε, attacker A can preempt any block future mined by other miners. So at
arbitrarily small cost, A eliminates orphan risk for fraction α of his blocks. This
makes both censoring and doublespending transactions easier for the attacker.
A third drawback to defacto future mining is that target G no longer quantifies
the actual security applied to the chain. Under conventional PoW, Equation 2
can be used to determine D, which is equivalent to the expected number of
hashes performed per block, a proxy for blockchain security. However, given
defacto future mining on RTT, the target overshoots the actual hashes per
block because miners never mine to a target greater than g(τ) < G.

5 Radium Protocol

In this section we present the Radium protocol, which is an extension of RTT.
The primary difference is that, in Radium, block reward is also scaled with inter-
block time. This causes the reward per hash to remain uniform for a given block
(much like conventional PoW), eliminating the profitability of future mining.
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5.1 Mining

Radium targets a 600 second average block time like bitcoin, i.e. T = 600. Like
RTT, the mining target at each second t after the last block is given by sub-
target gk(t) where k = 2. For a given target G, and combining Equations 10–12,
we have

gk(t) = G
λ(t)

λ
= G

atk−1

1/T
= GT tk−1k

[
Γ (1 + 1

k )

T

]k
= kGΓ

(
1 +

1

k

)k
tk−1

T k−1
.

(19)
Radium can use any PoW algorithm, for example SHA256. Mined blocks are
rapidly propagated header-first to all other miners. If the timestamp of the
block is drastically different than the time on the recipient’s machine, then it
is discarded. In practice the time difference can be as little as the maximum
expected header propagation delay if miners use NTP to coordinate clocks.
The use of NTP in the Bitcoin network has been discussed as a possibility in
the past [1]. Note that NTP synchronized clocks are to aid compliant miners.
Radium does not rely on dishonest miners reporting accurate time.

5.2 Rewards

Let d(t) = S/gk(t) be the sub-difficulty, where S is the size of the hash space.

Define a new reward function r(t) = C d(t)
d(T ) for a block mined at elapsed time

t. By construction, r(t) will pay out exactly C coins when a block is mined
in target time, T seconds. And it will pay out more or less than that if the
block is mined, respectively, sooner or later. The appeal of using r(t) is that the
expected reward-per-hash for mining at any given sub-target gk(t∗) is constant:
C
d(T ) . Thus, this new reward function will serve to disincentivize future mining.

One of the features of the RTT protocol is that the risk of entering a chain
death spiral is eliminated because the difficulty will eventually approach zero
as time progresses. The same is true for Radium, except that the reward pay-
out also approaches zero. Thus, in relative terms, the reward per hash never
increases in Radium. However, chain death remains highly unlikely because the
difficulty will eventually become so low that a block can be easily mined on a
single CPU with minimal effort.

5.3 Difficulty adjustment

Radium uses feedback control to adjust its difficulty in much the same way as
conventional PoW protocols. In particular, it adopts the same mechanism used
by RTT, which we describe and refine presently.

Mining amounts to successive draws of random variable T (representing
block time) from a given distribution, while difficulty adjustment involves esti-
mating the current scale of the block time distribution from T and moving that
scale closer to the ideal. Therefore, difficulty adjustment is essentially parameter
estimation from sample T . Rather than directly estimating the scale of Weibull
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Figure 2: Median block times for Bitcoin (red) and Radium (blue) across 1000 trials
of a 30-block simulation (5th and 95th percentiles shown as dashed lines). After each
block in the simulation, the difficulty is adjusted according to Equation 1 for Bitcoin and
Equation 23 for Radium, with T being the mean of the previous two block times.

distributed T , Harding [4] opts to transform T to an exponentially distributed
random variable T ′ and estimate its scale instead. Because this transformation
amplifies distortions due to hash rate fluctuations, he finds that a single sample
is often sufficient to accurately update the difficulty.

THEOREM 3: A block with inter-arrival time T mined under the Radium
protocol with target G would have inter-arrival time T ′ = aTkT

k if mined
under conventional PoW with target G.

PROOF: Let T be a random variable drawn from Weibull(k, a) and hav-
ing CDF F (t; k, a) as defined in Equation 8. The probability integral trans-
form (PIT) dictates that random variable U = F (T ; k, a) has distribution
Uniform(0, 1). Now define H(x;λ) = 1 − e−λx, the CDF of the distribution
Expon(λ), where λ is defined in Equation 11. We recover T ′ ∼ Expon(λ) by
applying the PIT in reverse using H−1:

T ′ = H−1(U ;λ)

= − ln(1−U)
λ

= − ln(1−F (T ;k,a))
λ

= − ln(1−1−eaTk/k)
λ

= aTkT
k .

(20)

2
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Suppose that miners currently operate with hash rate h and that for block
i, it happens that T ′i 6= T . Being exponential, the actual inter-arrival time for
block i, T ′i , is an unbiased estimator of its expected value, i.e. T ′i ≈ E[T ′i ] = 1

λi
.

Now suppose that T ′i 6= T . We seek to adjust Gi+1 so that T ′i+1 = T . Note
that, because Di represents the expected number of hashes required to mine a
block, T ′i ≈ 1/λi = Di/h. And, according to Equations 11 and 4,

1

λi
= T =

Di

h
=

S

Gih
(21)

when the DAA is at rest, which implies that it is necessary to revise Gi+1 so
that T = S/(Gi+1h). We have,

T ′i ≈ Di

h

⇒ atk

k T ≈ Di

h .
⇒ T ≈ k

atk
Di

h

= Di

(atk/k)h
.

(22)

It follows that an update for the difficulty, based on the mean of the previous n
block inter-arrival times T , is given by

Di+1 =
k

aT
k
Di. (23)

Statistic 5th percentile median 95th percentile

Two-sample Bitcoin 18s 410s 4994s
Bitcoin Ideal 31s 416s 1797s
Two-sample Radium 129s 599s 2114s

Table 1: Block time statistics for simulations of both Bitcoin and Radium when the
difficulty is adjusted every block based on the previous two block times. Statistics of the
distribution Expon(T ), representing the best possible variability for Bitcoin, are provided
for comparison. Each statistic reported is itself the result of the median over the 30-block
simulation, with 1000 trials performed per block.

5.4 Block time simulation

We ran a mining simulation in both Bitcoin and Radium that updated the
difficulty in each according to Equation 1 and Equation 23, respectively, where
T was the mean of the last two block times. Each trial of the simulation ran for
30 consecutive blocks for 1000 trials total. On a log scale, Figure 2 shows the
median and 5th and 95th percentiles for Bitcoin and Radium. Not surprisingly,
Bitcoin block times (red) show large variability. However, Radium (blue) shows
much better concentration of block times around the target of 600s.
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Table 1 quantifies the median (across the 30 blocks) of medians and 5th and
95th percentiles (each across the 1000 trials). It includes the same statistics
for distribution Expon(T ), which corresponds to the best possible variability for
Bitcoin, when the ideal difficulty is known. The table shows that the median
block time for Radium is much closer to the target time of 600s than either two-
sample Bitcoin or the ideal. Also, the 5th percentile for two-sample Radium
avoids producing extremely early blocks. Finally, the 95th percentile of block
times for Radium stays within 18% of the 95th percentile of Bitcoin Ideal. In
contrast, two-sample Bitcoin adjustment is almost 3 times the ideal. Overall,
we find that two-sample Radium difficulty adjustment performs nearly as well
as the best possible Bitcoin difficulty adjustment algorithm.

5.5 Reduction in block time variance

A major feature of RTT is that its Weibull distributed block times have lower
variance than exponentially distributed block times under conventional PoW.
This affords RTT, and Radium by proxy, with more reliable block inter-arrival
times. In this section, we calculate the variances of the Radium block time and
compare it to that of the Bitcoin protocol.

We compare the variance in block time for Radium relative to the Bitcoin
protocol when the expected block times are both equal to T . To that end, let
X and Yk be random variables representing the block times for Bitcoin and
Radium (for given k), respectively. Section 2.2 explains that X is exponentially
distributed with mean T = 1/λ. It is well known that the variance of the
exponential distribution is equal to the square of its mean, i.e. V arT [X] = T 2.
On the other hand, Section 2.3 explained that block times have distribution
Weibull(k, a), with a is defined in Equation 10. For the mean of the Weibull
distribution we have E[Yk] = γΓ (1 + 1/k), where

γ =

(
k

a

)1/k

=
T

Γ (1 + 1/k)
. (24)

Note that, by construction, E[Yk] = T . Next, the variance of Y is given by

V ar[Yk] = γ2
[
Γ (1 + 2/k)− Γ (1 + 1/k)2

]
. (25)

Thus, when blocks are expected every T seconds, the variance is

V ar[Yk] =

(
T

Γ (1 + 1/k)

)2 [
Γ (1 + 2/k)− Γ (1 + 1/k)2

]
. (26)

Finally, the improvement in variance when adopting Radium over Bitcoin is
equal to

V ar[Yk]

V ar[X]
=

(
1

Γ (1 + 1/k)

)2 [
Γ (1 + 2/k)− Γ (1 + 1/k)2

]
=

Γ (1 + 2/k)

Γ (1 + 1/k)2
− 1.

(27)
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In particular, the improvement for k = 2 becomes

V ar[Y2]

V ar[X]
=

Γ (2)

Γ (3/2)2
− 1 =

4

π
− 1 ≈ 0.27. (28)

5.6 Orphan rate

Perhaps the only drawback of more reliable block times is an increase in the rate
that orphan blocks are produced. An orphan occurs when two viable blocks are
produced at roughly the same time. Miners will ultimately settle on one to form
the tip of the blockchain, while the other will be discarded.

Fortunately, the orphan rate observed under the Radium protocol is not
expected to be much worse than the orphan rate observed for Bitcoin. To
demonstrate this, we ran a mining simulation of both the Bitcoin and Radium
protocols for more than 850,000 blocks each. Any time two blocks were gen-
erated within the same three second time period, we incremented the orphan
counter. A three second interval was chosen because it represents a realistic
delay in today’s Bitcoin network [6]. Our simulation showed that Bitcoin is
expected to experience orphans approximately 0.22% of the time while Radium
is expected to experience orphans about 0.36% of the time. Thus, Radium’s
orphan rate is approximately 63% greater than that of Bitcoin; yet the absolute
rate remains low.

6 Radium Security Analysis

In this section, we analyze various aspects of Radium protocol security. Our
primary focus is on incentivizing protocol compliance as well as mitigating the
effects of common attacks on PoW blockchains.

6.1 Reward function exploitation

A major concern with using dynamic reward function r(t) (defined in Sec-
tion 5.2) over a constant reward function is that a miner with a large amount
of hash rate might suddenly switch from one blockchain (say BTC) over to the
Radium chain and mine a block at a very high difficulty so as to gain excessive
reward. We call this behavior switch-mining. The following argument attempts
to show the conditions under which miners can and cannot profit in this fashion.
We find that when k ≤ 2, there exists no advantage to switch-mining between
Radium and another chain.

Suppose that for block 1, a miner from chain X suddenly increases the hash
rate on the Radium chain by multiple x > 1. Equation 18 shows that the
resulting block time distribution is Weibull (k, xa). Combining Equations 10
and 9 it follows that the expected block time E[T1] will be

E[T1] = Γ (1 + 1/k)

(
k

xa

)1/k

= T x−1/k. (29)
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Figure 3: Expected reward per second for a network of miners who switch-mine between
Radium and another coin such as Bitcoin. Each curve corresponds to a different value of
k from Equation 10. The dashed line indicates reward per second if miners do not switch.

Thus, the expected reward E[R1] amounts to

E[R1] = C
d(T x−1/k)

d(T )
= C

g(T )

g(T x−1/k)
= C

T k−1

(T x−1/k)k−1
= Cx(k−1)/k. (30)

Of course, the DAA will respond by adjusting the target so that the increased
hash rate yields a block in time T . Next, suppose that, for block 2, the miners
withdraw their hash rate. The affect of this withdrawal is inverse-symmetric to
the affect of the increase; it follows by substituting y = 1/x in the equations
above. We have E[T2] = T x1/k and E[R2] = Cx−(k−1)/k.

Figure 3 shows the reward-per-second as a function of hash rate increase
multiples x for various values of k where C = 12.5. Because the attack takes
two blocks to carry out, we measure aggregate reward over both blocks. The
results are compared to baseline, where hash rate does not fluctuate. We can
see from the figure that it is indeed possible for miners to profit, per-unit-hash,
for values of k exceeding 2. However, when k = 1, miners actually lose profit,
and for k = 2, there is no change in profitability.

6.2 Doublespend attack susceptibility

Bissias and Levine [2] argue that high variance is at the core of two of the most
fundamental attacks on PoW blockchains: the doublespend and selfish mining.
Their Bobtail protocol demonstrates that a lower variance block time can sub-
stantially mitigate both attacks. We can compare Radium’s improvement in
variance over Bitcoin (see Section 5.5) to that of Bobtail over Bitcoin.

Let Zj be a random variable representing the block time using Bobtail with
parameter j; i.e., there are j proofs per block. It has been shown [2] that the
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Figure 4: Probability (dependent axis) that an attacker, having fraction q of the total
hash rate (individual lines), succeeds in a doublespend attack when merchants impose an
embargo period (independent axis) of z blocks. The solid and dashed lines indicate success
probability in the Bitcoin and Radium protocols, respectively. Each point represents the
success frequency over 1000 trials.

improvement in variance relative to Bitcoin is given by

V ar[Zj ]

V ar[X]
=

8j + 4

6(j2 + j)
. (31)

Finally, we can determine the value of j for which Bobtail’s improvement in
variance is equivalent to RTT with k = 2 by solving

4

π
− 1 =

8j + 4

6(j2 + j)
. (32)

Solving for j we have

j =
7π − 12 +

√
144− 72π + 25π2

6(4− π)
> 4. (33)

Yet despite the fact that the reduction in variance for Radium is roughly
equivalent to Bobtail with j = 4, it turns out that Radium has the same sus-
ceptibility to doublespend attacks as does Bitcoin. Figure 4 shows the result
of a mining simulator that we ran for both Bitcoin (solid lines) and Radium
(dashed lines). Each curve represents a different attacker hash power, ranging
from 10% up to 40% of the total. Points along each curve correspond to the
embargo period imposed by the coin receiver, a merchant for example. For
an embargo period of length z, the merchant will not release goods purchased
with a transaction in block i until z additional blocks have been mined after it.

15



The figure shows that there are negligible differences between attacker success
probability when comparing Bitcoin to Radium.

The results of our simulation suggest that there might be something fun-
damental about the doublespend protection afforded by protocols that use just
one PoW sample per block. We formalize this conjecture below, but leave in-
vestigation to future work.

CONJECTURE 1: Mining a block under PoW amounts to sampling a suf-
ficiently low statistic from a known distribution. For example, in Bitcoin, the
statistic is a single exponential random variable. Let K be any mining statistic
on a single sample per block, i.e. a single random variable is sampled once.
And assume that K is fair in the sense that a miner with fraction x of the hash
rate receives fraction x of the rewards in expectation. Then the doublespend
protection offered by a protocol using K is no better than that offered by a
protocol using an exponential random variable for its statistic.

7 Conclusion

We have identified and analyzed a critical vulnerability in the real-time block
rate targeting protocol (RTT). To mitigate this vulnerability, we introduced
Radium, a refinement of RTT. Like RTT, Radium offers less variable block
times, a more responsive DAA, and thwarts the chain death spiral that threatens
minority hash rate blockchains. We have also shown that Radium maintains
Bitcoin’s robustness to the doublespend attack as well as its low orphan rate.
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