Skip to main content

Identification of Palatal Fricative Fronting Using Shannon Entropy of Spectrogram

  • Conference paper
  • First Online:
Mining Intelligence and Knowledge Exploration (MIKE 2019)

Abstract

In this paper, an attempt has been made to identify palatal fricative fronting in children speech, where postalveolar /sh/ is mispronounced as dental /s/. In children’s speech, the concentration of energy (darkest part) of spectrogram for /s/ ranges 4000 Hz to 8000 Hz, whereas it ranges 3000 Hz 8000 Hz for /sh/. Gammatonegram follows the frequency subbands of the ear (wider for higher frequencies). Various spectral properties such as spectral centroid, spectral crest factor, spectral decrease, spectral flatness, spectral flux, spectral kurtosis, spectral spread, spectral skewness, spectral slope and Shannon entropy of the spectrogram (interval of 2000 Hz), extracted from the Gammatonegram are proposed for the characterization of /sh/ and /s/. The dataset recorded from 60 native Kannada speaking children of age between 3 1/2 to 6 1/2 years is considered for the analysis from NITK Kids’ Speech Corpus. Support vector machine (SVMs) is considered for the classification. Various combinations of the proposed features are considered for the evaluation, along with the MFCCs(39) and LPCCs(39). Combination of MFCCs(39), LPCCs(39) and Entropy(4) is observed to achieve highest mispronunciation identification performance of 83.2983%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  2. Cucchiarini, C., Strik, H., Boves, L.: Different aspects of expert pronunciation quality ratings and their relation to scores produced by speech recognition algorithms. Speech Commun. 30(2–3), 109–119 (2000)

    Article  Google Scholar 

  3. Franco, H., Neumeyer, L., Ramos, M., Bratt, H.: Automatic detection of phone-level mispronunciation for language learning. In: Sixth European Conference on Speech Communication and Technology, pp. 851–854 (1999)

    Google Scholar 

  4. García, V., Mollineda, R.A., Sánchez, J.S., Alejo, R., Sotoca, J.M.: When overlapping unexpectedly alters the class imbalance effects. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007. LNCS, vol. 4478, pp. 499–506. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72849-8_63

    Chapter  Google Scholar 

  5. Grunwell, P.: Clinical Phonology. Aspen Publishers, New York (1982)

    Google Scholar 

  6. Harrison, A.M., Lo, W.K., Qian, X.J., Meng, H.: Implementation of an extended recognition network for mispronunciation detection and diagnosis in computer-assisted pronunciation training. In: International Workshop on Speech and Language Technology in Education, pp. 45–48 (2009)

    Google Scholar 

  7. Hodson, B.W.: The Assessment of Phonological Processes. Interstate Printers and Publishers, Danville (1980)

    Google Scholar 

  8. Hsu, C.W., et al.: A practical guide to support vector classification, pp. 1–16 (2003)

    Google Scholar 

  9. Huang, X., Huang, X., Acero, A., Hon, H.W., Reddy, R.: Spoken Language Processing: A Guide to Theory, Algorithm, and System Development, 1st edn. Prentice Hall PTR, Upper Saddle River (2001)

    Google Scholar 

  10. Ingram, D.: Phonological rules in young children. J. Child Lang. 1(1), 49–64 (1974)

    Article  Google Scholar 

  11. Johnston, J.D.: Transform coding of audio signals using perceptual noise criteria. IEEE J. Sel. Areas Commun. 6(2), 314–323 (1988)

    Article  Google Scholar 

  12. Kent, R.D., Vorperian, H.K.: Speech impairment in down syndrome: a review. J. Speech Lang. Hear. Res. 56(1), 178–210 (2013)

    Article  Google Scholar 

  13. Lee, A., Glass, J.: A comparison-based approach to mispronunciation detection. In: 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 382–387. IEEE (2012)

    Google Scholar 

  14. Li, K., Qian, X., Meng, H.: Mispronunciation detection and diagnosis in L2 English speech using multidistribution deep neural networks. IEEE/ACM Trans. Audio Speech Lang. Process. 25(1), 193–207 (2017)

    Article  Google Scholar 

  15. Li, W., Siniscalchi, S.M., Chen, N.F., Lee, C.H.: Improving non-native mispronunciation detection and enriching diagnostic feedback with DNN-based speech attribute modeling. In: International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6135–6139. IEEE (2016)

    Google Scholar 

  16. Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  17. Martin, P.: Winpitch LTL, un logiciel multimédia d’enseignement de la prosodie. Alsic. Apprentissage des Langues et Systèmes d’Information et de Communication 8(2), 95–108 (2005)

    Google Scholar 

  18. Miodonska, Z., Bugdol, M.D., Krecichwost, M.: Dynamic time warping in phoneme modeling for fast pronunciation error detection. Comput. Biol. Med. 69, 277–285 (2016)

    Article  Google Scholar 

  19. Murty, K.S.R., Yegnanarayana, B.: Combining evidence from residual phase and MFCC features for speaker recognition. IEEE Signal Process. Lett. 13(1), 52–55 (2006)

    Article  Google Scholar 

  20. Pal, M.: Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26(1), 217–222 (2005)

    Article  Google Scholar 

  21. Peeters, G.: A large set of audio features for sound description (similarity and classification). CUIDADO Project IRCAM Technical Report (2004)

    Google Scholar 

  22. Pour, A.F., Asgari, M., Hasanabadi, M.R.: Gammatonegram based speaker identification. In: 2014 4th International Conference on Computer and Knowledge Engineering (ICCKE), pp. 52–55. IEEE (2014)

    Google Scholar 

  23. Qian, X., Meng, H., Soong, F.K.: The use of DBN-HMMs for mispronunciation detection and diagnosis in L2 English to support computer-aided pronunciation training. In: Thirteenth Annual Conference of the International Speech Communication Association, pp. 775–778 (2012)

    Google Scholar 

  24. Ramteke, P.B., Supanekar, S., Hegde, P., Nelson, H., Aithal, V., Koolagudi, S.G.: NITK Kids’ speech corpus. In: Proceedings of Interspeech 2019, pp. 331–335 (2019)

    Google Scholar 

  25. Scheirer, E., Slaney, M.: Construction and evaluation of a robust multifeature speech/music discriminator. In: International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1331–1334. IEEE (1997)

    Google Scholar 

  26. Shriberg, L.D., Kwiatkowski, J.: Phonological disorders I: a diagnostic classification system. J. Speech Hear. Disord. 47(3), 226–241 (1982)

    Article  Google Scholar 

  27. Sturm, B.L.: An introduction to audio content analysis: applications in signal processing and music informatics by alexander lerch. Comput. Music J. 37(4), 90–91 (2013)

    Article  Google Scholar 

  28. Tiwari, V.: MFCC and its applications in speaker recognition. Int. J. Emerg. Technol. 1(1), 19–22 (2010)

    Google Scholar 

  29. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2(Nov), 45–66 (2001)

    MATH  Google Scholar 

  30. Venkitaraman, A., Adiga, A., Seelamantula, C.S.: Auditory-motivated gammatone wavelet transform. Signal Process. 94, 608–619 (2014)

    Article  Google Scholar 

  31. Wei, S., Hu, G., Hu, Y., Wang, R.H.: A new method for mispronunciation detection using support vector machine based on pronunciation space models. Speech Commun. 51(10), 896–905 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Cognitive Science Research Initiative (CSRI), Department of Science & Technology, Government of India, Grant no. SR/CSRI/ 49/2015, for its financial support on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pravin Bhaskar Ramteke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramteke, P.B., Supanekar, S., Aithal, V., Koolagudi, S.G. (2020). Identification of Palatal Fricative Fronting Using Shannon Entropy of Spectrogram. In: B. R., P., Thenkanidiyoor, V., Prasath, R., Vanga, O. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2019. Lecture Notes in Computer Science(), vol 11987. Springer, Cham. https://doi.org/10.1007/978-3-030-66187-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66187-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66186-1

  • Online ISBN: 978-3-030-66187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics