Skip to main content

CNN Pre-initialization by Minimalistic Part-Learning for Handwritten Numeral Recognition

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11987))

Abstract

The performance of all types of neural networks is affected by initialization of weights since most of these networks follow some form of the derivative gradient descent algorithm for weight optimization that tends to get trapped in local minima. A new scheme is presented in our work for initializing the weights of Convolutional Neural Networks (CNNs) by part-learning using only 5% of the training data, in a minimalistic approach. The problem at hand is the classification of handwritten numeral images. The parts that are learned, by two-way CNNs, comprise of the top-half and bottom-half of the numeral image respectively, with the second half of the image kept masked. The two set of weights initialized in this manner are respectively fine-tuned on the remaining 95% training images. The probabilistic softmax scores of the two CNNs are fused in the last stage to decide the test label. Our work validates the theory inspired from human cognition that learning in stages with increasing size and complexity of the training data improves the performance over time, rather than training on the complete dataset at one go. Experiments on the benchmark MNIST handwritten English numeral dataset yield high accuracies as compared to the state of the art.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bansal, A., Ranjan, R., Castillo, C.D., Chellappa, R.: Deep features for recognizing disguised faces in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 10–16 (2018)

    Google Scholar 

  2. Wang, J., Chen, Y., Hao, S., Peng, X., Lisha, H.: Deep learning for sensor-based activity recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

    Article  Google Scholar 

  3. Shamsolmoali, P., Kumar Jain, D., Zareapoor, M., Yang, J., Afshar Alam, M.: High-dimensional multimedia classification using deep CNN and extended residual units. Multimedia Tools Appl. 78(17), 23867–23882 (2018). https://doi.org/10.1007/s11042-018-6146-7

    Article  Google Scholar 

  4. Susan, S., Dwivedi, M.: Dynamic growth of hidden-layer neurons using the non-extensive entropy. In: 2014 Fourth International Conference on Communication Systems and Network Technologies, pp. 491–495. IEEE (2014)

    Google Scholar 

  5. Susan, S., Ranjan, R., Taluja, U., Rai, S., Agarwal, P.: Neural net optimization by weight-entropy monitoring. In: Verma, N., Ghosh, A. (eds.) Computational Intelligence: Theories, Applications and Future Directions -, vol. II, pp. 201–213. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-1135-2_16

    Chapter  Google Scholar 

  6. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algorithms. IJCAI 89, 762–767 (1989)

    MATH  Google Scholar 

  7. Aljarah, I., Faris, H., Mirjalili, S.: Optimizing connection weights in neural networks using the whale optimization algorithm. Soft. Comput. 22(1), 1–15 (2016). https://doi.org/10.1007/s00500-016-2442-1

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  9. Dewa, C.K.: Suitable CNN weight initialization and activation function for javanese vowels classification. Procedia Comput. Sci. 144, 124–132 (2018)

    Article  Google Scholar 

  10. Saini, M., Susan, S.: Comparison of deep learning, data augmentation and bag of-visual-words for classification of imbalanced image datasets. In: Santosh, K.C., Hegadi, Ravindra S. (eds.) RTIP2R 2018. CCIS, vol. 1035, pp. 561–571. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-9181-1_49

    Chapter  Google Scholar 

  11. Saini, M., Susan, S.: Deep transfer with minority data augmentation for imbalanced breast cancer dataset. Appl. Soft Comput. 97, 106759 (2020)

    Article  Google Scholar 

  12. Carneiro, G., Nascimento, J., Bradley, Andrew P.: Unregistered multiview mammogram analysis with pre-trained deep learning models. In: Navab, N., Hornegger, J., Wells, William M., Frangi, Alejandro F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 652–660. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_78

    Chapter  Google Scholar 

  13. Bulat, A., Tzimiropoulos, G., Kossaifi, J., Pantic, M.: Improved training of binary networks for human pose estimation and image recognition. arXiv preprint arXiv:1904.05868 (2019)

  14. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  15. Tang, P., Wang, X., Huang, Z., Bai, X., Liu, W.: Deep patch learning for weakly supervised object classification and discovery. Pattern Recogn. 71, 446–459 (2017)

    Article  Google Scholar 

  16. Lin, W., Zhang, Y., Jiwen, L., Zhou, B., Wang, J., Zhou, Yu.: Summarizing surveillance videos with local-patch-learning-based abnormality detection, blob sequence optimization, and type-based synopsis. Neurocomputing 155, 84–98 (2015)

    Article  Google Scholar 

  17. Susan, S., Sethi, D., Arora, K.: CW-CAE: pulmonary nodule detection from imbalanced dataset using class-weighted convolutional autoencoder. In: Gupta, D., Khanna, A., Bhattacharyya, S., Hassanien, A.E., Anand, S., Jaiswal, A. (eds.) International Conference on Innovative Computing and Communications. AISC, vol. 1166, pp. 825–833. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-5148-2_71

    Chapter  Google Scholar 

  18. Susan, S., Singh, V.: On the discriminative power of different feature subsets for handwritten numeral recognition using the box-partitioning method. In: 2011 Annual IEEE India Conference, pp. 1–5. IEEE (2011)

    Google Scholar 

  19. Huang, F.-A., Su, C.-Y., Chu, T.-T.: Kinect-based mid-air handwritten digit recognition using multiple segments and scaled coding. In: 2013 International Symposium on Intelligent Signal Processing and Communication Systems, pp. 694–697. IEEE (2013)

    Google Scholar 

  20. Sun, J., Ponce, J.: Learning discriminative part detectors for image classification and cosegmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3400–3407 (2013)

    Google Scholar 

  21. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4353–4361 (2015)

    Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  23. Liu, X., Wang, X., Matwin, S.: Interpretable deep convolutional neural networks via meta-learning. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2018)

    Google Scholar 

  24. Yang, S., Luo, P., Loy, C.C., Shum, K.W., Tang, X.: Deep representation learning with target coding. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  25. Visin, F., Kastner, K., Cho, K., Matteucci, M., Courville, A., Bengio, Y.: ReNet: a recurrent neural network based alternative to convolutional networks. arXiv preprint arXiv:1505.00393 (2015)

  26. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)

    Google Scholar 

  27. Susan, S., Malhotra, J.: Learning interpretable hidden state structures for handwritten numeral recognition. In: 2020 4th International Conference on Computational Intelligence and Networks (CINE), pp. 1–6. IEEE (2020)

    Google Scholar 

  28. Susan, S., Malhotra, J.: Recognising devanagari script by deep structure learning of image quadrants. DESIDOC J. Libr. Inf. Technol. 40(5), 268–271 (2020)

    Article  Google Scholar 

  29. https://github.com/JMalhotra7/CNN-Pre-Initialization-by-Minimalistic-Part-Learning-for-Handwritten-Numeral-Recognition. Accessed 20 Dec 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seba Susan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Susan, S., Malhotra, J. (2020). CNN Pre-initialization by Minimalistic Part-Learning for Handwritten Numeral Recognition. In: B. R., P., Thenkanidiyoor, V., Prasath, R., Vanga, O. (eds) Mining Intelligence and Knowledge Exploration. MIKE 2019. Lecture Notes in Computer Science(), vol 11987. Springer, Cham. https://doi.org/10.1007/978-3-030-66187-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66187-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66186-1

  • Online ISBN: 978-3-030-66187-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics