Skip to main content

Automated Assessment of the Curliness of Collagen Fiber in Breast Cancer

  • Conference paper
  • First Online:
  • 2650 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12535))

Abstract

The growth and spread of breast cancer are influenced by the composition and structural properties of collagen in the extracellular matrix of tumors. Straight alignment of collagen has been attributed to tumor cell migration, which is correlated with tumor progression and metastasis in breast cancer. Thus, there is a need to characterize collagen alignment to study its value as a prognostic biomarker. We present a framework to characterize the curliness of collagen fibers in breast cancer images from DUET (DUal-mode Emission and Transmission) studies on hematoxylin and eosin (H&E) stained tissue samples. Our novel approach highlights the characteristic fiber gradients using a standard ridge detection method before feeding into the convolutional neural network. Experiments were performed on patches of breast cancer images containing straight or curly collagen. The proposed approach outperforms in terms of area under the curve against transfer learning methods trained directly on the original patches. We also explore a feature fusion strategy to combine feature representations of both the original patches and their ridge filter responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brabrand, A., et al.: Alterations in collagen fibre patterns in breast cancer. A premise for tumour invasiveness? Apmis 123(1), 1–8 (2015)

    Google Scholar 

  2. Burke, K., Tang, P., Brown, E.: Second harmonic generation reveals matrix alterations during breast tumor progression. J. Biomed. Opt. 18(3), 031106–031106 (2013)

    Article  Google Scholar 

  3. Carpino, G., et al.: Matrisome analysis of intrahepatic cholangiocarcinoma unveils a peculiar cancer-associated extracellular matrix structure. Clin. Proteomics 16(1), 1–12 (2019)

    Article  Google Scholar 

  4. Case, A., et al.: Identification of prognostic collagen signatures and potential therapeutic stromal targets in canine mammary gland carcinoma. PLOS One 12(7), e0180448 (2017)

    Article  Google Scholar 

  5. Cason, J.E.: A rapid one-step Mallory-Heidenhain stain for connective tissue. Stain Technol. 25(4), 225–226 (1950)

    Article  Google Scholar 

  6. Martins Cavaco, A.C., Dâmaso, S., Casimiro, S., Costa, L.: Collagen biology making inroads into prognosis and treatment of cancer progression and metastasis. Cancer Metastasis Rev. 39(3), 603–623 (2020). https://doi.org/10.1007/s10555-020-09888-5

    Article  Google Scholar 

  7. Dolber, P., Spach, M.: Conventional and confocal fluorescence microscopy of collagen fibers in the heart. J. Histochem. Cytochem. 41(3), 465–469 (1993)

    Article  Google Scholar 

  8. Drifka, C.R., et al.: Highly aligned stromal collagen is a negative prognostic factor following pancreatic ductal adenocarcinoma resection. Oncotarget 7, 76197 (2016)

    Article  Google Scholar 

  9. Elbischger, P., Bischof, H., Regitnig, P., Holzapfel, G.: Automatic analysis of collagen fiber orientation in the outermost layer of human arteries. Pattern Anal. Appl. 7(3), 269–284 (2004). https://doi.org/10.1007/BF02683993

    Article  MathSciNet  Google Scholar 

  10. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  11. Fereidouni, F., et al.: Dual-mode emission and transmission microscopy for virtual histochemistry using hematoxylin-and eosin-stained tissue sections. Biomed. Opt. Express 10(12), 6516–6530 (2019)

    Article  Google Scholar 

  12. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hidayat, R., Green, R.D.: Real-time texture boundary detection from ridges in the standard deviation space. In: BMVC, pp. 1–10 (2009)

    Google Scholar 

  15. Kistenev, Y.V., Vrazhnov, D.A., Nikolaev, V.V., Sandykova, E.A., Krivova, N.A.: Analysis of collagen spatial structure using multiphoton microscopy and machine learning methods. Biochemistry (Moscow) 84(1), 108–123 (2019). https://doi.org/10.1134/S0006297919140074

    Article  Google Scholar 

  16. Lillie, R., Miller, G.: Histochemical acylation of hydroxyl and amino groups. Effect on the periodic acid Schiff reaction, anionic and cationic dye and Van Gieson collagen stains. J. Histochem. Cytochem.12(11), 821–841 (1964)

    Google Scholar 

  17. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  18. Liu, Y., Keikhosravi, A., Mehta, G.S., Drifka, C.R., Eliceiri, K.W.: Methods for quantifying fibrillar collagen alignment. In: Rittié, L. (ed.) Fibrosis. MMB, vol. 1627, pp. 429–451. Springer, New York (2017). https://doi.org/10.1007/978-1-4939-7113-8_28

    Chapter  Google Scholar 

  19. Liu, Y., et al.: Fibrillar collagen quantification with curvelet transform based computational methods. Front. Bioeng. Biotechnol. 8, 198 (2020)

    Article  Google Scholar 

  20. Majeed, H., Okoro, C., Kajdacsy-Balla, A., Toussaint, K.C., Popescu, G.: Quantifying collagen fiber orientation in breast cancer using quantitative phase imaging. J. Biomed. Opt. 22(4), 046004 (2017)

    Article  Google Scholar 

  21. Mayerich, D.M., Walsh, M., Kadjacsy-Balla, A., Mittal, S., Bhargava, R.: Breast histopathology using random decision forests-based classification of infrared spectroscopic imaging data. In: Medical Imaging 2014: Digital Pathology, vol. 9041, p. 904107. International Society for Optics and Photonics (2014)

    Google Scholar 

  22. Meijering, E., Jacob, M., Sarria, J.C., Steiner, P., Hirling, H., Unser, M.: Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry Part A J. Int. Soc. Anal. Cytol. 58(2), 167–176 (2004)

    Article  Google Scholar 

  23. Mostaço-Guidolin, L.B., et al.: Collagen morphology and texture analysis: from statistics to classification. Sci. Rep. 3(1), 1–10 (2013)

    Article  Google Scholar 

  24. Natal, R.A., et al.: Collagen analysis by second-harmonic generation microscopy predicts outcome of luminal breast cancer. Tumor Biol. 40(4), 1010428318770953 (2018)

    Article  Google Scholar 

  25. Ng, C.-C., Yap, M.H., Costen, N., Li, B.: Automatic wrinkle detection using hybrid Hessian filter. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 609–622. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16811-1_40

    Chapter  Google Scholar 

  26. Park, E., Han, X., Berg, T.L., Berg, A.C.: Combining multiple sources of knowledge in deep CNNs for action recognition. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–8. IEEE (2016)

    Google Scholar 

  27. Provenzano, P.P., Eliceiri, K.W., Campbell, J.M., Inman, D.R., White, J.G., Keely, P.J.: Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4(1), 1–15 (2006)

    Article  Google Scholar 

  28. Provenzano, P.P., et al.: Collagen density promotes mammary tumor initiation and progression. BMC Med. 6(1), 1–15 (2008)

    Article  Google Scholar 

  29. Sato, Y., et al.: Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med. Image Anal. 2(2), 143–168 (1998)

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, pp. 568–576 (2014)

    Google Scholar 

  31. Velez, D., et al.: 3D collagen architecture induces a conserved migratory and transcriptional response linked to vasculogenic mimicry. Nat. Commun. 8(1), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  32. Whittaker, P., Kloner, R., Boughner, D., Pickering, J.: Quantitative assessment of myocardial collagen with picrosirius red staining and circularly polarized light. Basic Res. Cardiol. 89(5), 397–410 (1994). https://doi.org/10.1007/BF00788278

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Cancer Institute grants 3U24CA215109, 1UG3CA225021, 1U24CA180924 and its supplement 3U24CA180924-05S2, as well as the grant R33CA202881 and its supplement 3R33CA202881-02S1. Partial support for this effort was also funded through the generosity of Bob Beals and Betsy Barton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Paredes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paredes, D. et al. (2020). Automated Assessment of the Curliness of Collagen Fiber in Breast Cancer. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics