Skip to main content

Registration of Multi-modal Volumetric Images by Establishing Cell Correspondence

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

Early development of an animal from an egg involves a rapid increase in cell number and several cell fate specification events accompanied by dynamic morphogenetic changes. In order to correlate the morphological changes with the genetic events, one typically needs to monitor the living system with several imaging modalities offering different spatial and temporal resolution. Live imaging allows monitoring the embryo at a high temporal resolution and observing the morphological changes. On the other hand, confocal images of specimens fixed and stained for the expression of certain genes enable observing the transcription states of an embryo at specific time points during development with high spatial resolution. The two imaging modalities cannot, by definition, be applied to the same specimen and thus, separately obtained images of different specimens need to be registered. Biologically, the most meaningful way to register the images is by identifying cellular correspondences between these two imaging modalities. In this way, one can bring the two sources of information into a single domain and combine dynamic information on morphogenesis with static gene expression data. Here we propose a new computational pipeline for identifying cell-to-cell correspondences between images from multiple modalities and for using these correspondences to register 3D images within and across imaging modalities. We demonstrate this pipeline by combining four-dimensional recording of embryogenesis of Spiralian annelid ragworm Platynereis dumerilii with three-dimensional scans of fixed Platynereis dumerilii embryos stained for the expression of a variety of important developmental genes. We compare our approach with methods for aligning point clouds and show that we match the accuracy of these state-of-the-art registration pipelines on synthetic data. We show that our approach outperforms these methods on real biological imaging datasets. Importantly, our approach uniquely provides, in addition to the registration, also the non-redundant matching of corresponding, biologically meaningful entities within the registered specimen which is the prerequisite for generating biological insights from the combined datasets. The complete pipeline is available for public use through a Fiji plugin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acosta, O., et al.: 3D shape context surface registration for cortical mapping (2010). In: IEEE International Symposium on Biomedical Imaging (ISBI) 2010

    Google Scholar 

  2. Asadulina, A., Panzera, A., Veraszto, C., Lieblig, C., Jekely, G.: Whole-body gene expression pattern registration in Platynereis larvae. EvoDevo 3(27), (2012)

    Google Scholar 

  3. Belongie, S., Puzicha, J., Malik, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  4. Bondi, A.: Van der Waals volumes and radii. J. Phys. Chem. 68, 441–451 (1964)

    Article  Google Scholar 

  5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transportation distances. In: Advances in Neural Information Processing Systems, vol. 26, pp. 2292–2300 (2013)

    Google Scholar 

  6. Farnia, P., Ahmadian, A., Khoshnevisan, A., Jaberzadeh, N., Kazerooni, A.: An efficient point based registration of intra-operative ultrasound images with MR images for computation of brain shift; a phantom study. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2011)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Frome, A., Huber, D., Kolluri, R., Bülow, T., Malik, J.: Recognizing objects in range data using regional point descriptors. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 224–237. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_18

    Chapter  Google Scholar 

  9. Guo, Y., Bennamoun, M., Sohel, F.: A comprehensive performance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116, 66–89 (2016). https://doi.org/10.1007/s11263-015-0824-y

    Article  MathSciNet  Google Scholar 

  10. Horn, B.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 4, 629–642 (1987)

    Article  Google Scholar 

  11. Hu, Y., Rijkhorst, E.-J., Manber, R., Hawkes, D., Barratt, D.: Deformable Vessel-Based Registration Using Landmark-Guided Coherent Point Drift. In: Liao, H., Edwards, P.J.E., Pan, X., Fan, Y., Yang, G.-Z. (eds.) MIAR 2010. LNCS, vol. 6326, pp. 60–69. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15699-1_7

    Chapter  Google Scholar 

  12. Huisken, J., Swoger, J., Bene, F.D., Wittbrodt, J., Stelzer, E.H.K.: Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004)

    Article  Google Scholar 

  13. Hörl, D., et al.: BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat. Methods 16, 870–874 (2019)

    Article  Google Scholar 

  14. Kainmueller, D., Jug, F., Rother, C., Myers, G.: Active graph matching for automatic joint segmentation and annotation of C. elegans. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 81–88. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_11

    Chapter  Google Scholar 

  15. Lindeberg, T.: Feature detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 70–116 (1998). https://doi.org/10.1023/A:1008045108935

    Article  Google Scholar 

  16. Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3D digital atlas of C. elegans and its application to single-cell analyses. Nat. Methods 6(4), 667–672 (2009)

    Article  Google Scholar 

  17. Michelin, G., Guignard, L., Fiuza, U.M., Lemaire, P., Godin, C., Malandain, G.: Cell pairings for ascidian embryo registration. In: 2015 IEEE International Symposium on Biomedical Imaging (ISBI) (2015)

    Google Scholar 

  18. Munro, E., Robin, F., Lemaire, P.: Cellular morphogenesis in ascidians: how to shape a simple tadpole. Curr. Opin. Genet. Dev. 16(4), 399–405 (2006)

    Article  Google Scholar 

  19. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  20. Preibisch, S., Saalfeld, S., Schindelin, J., Tomancak, P.: Software for bead-based registration of selective plane illumination microscopy data. Nat. Methods 7, 418–419 (2010)

    Article  Google Scholar 

  21. Schindelin, J., et al.: Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012)

    Article  Google Scholar 

  22. Tomer, R., Denes, A.S., Tessmar-Raible, K., Arendt, D.: Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142(5), 800–809 (2010)

    Article  Google Scholar 

  23. Tomer, R., Khairy, K., Amat, F., Keller, P.J.: Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9, 755–763 (2012)

    Article  Google Scholar 

  24. Urschler, M., Bischof, H.: Registering 3D lung surfaces using the shape context approach. In: Proceedings of the International Conference on Medical Image Understanding and Analysis, pp. 512–215 (2004)

    Google Scholar 

  25. Vergara, H.M., et al.: Whole-organism cellular gene-expression atlas reveals conserved cell types in the ventral nerve cord of Platynereis dumerilii. Proc. Natl. Acad. Sci. 114(23), 5878–5885 (2017)

    Article  Google Scholar 

  26. Viola, P.A., Wells, W.M.: Alignment by maximization of mutual information. Int. J. Comput. Vis. 24, 137–154 (1995). https://doi.org/10.1023/A:1007958904918

    Article  Google Scholar 

  27. Vopalensky, P., Tosches, M., Achim, K., Thorsager, M.H., Arendt, D.: From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. BMC Biol. 17, 81 (2019). https://doi.org/10.1186/s12915-019-0705-x

    Article  Google Scholar 

  28. Zhong, Y.: Intrinsic shape signatures: a shape descriptor for 3D object recognition. In: International Conference on Computer Vision ICCV Workshop (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian Jug or Pavel Tomancak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lalit, M., Handberg-Thorsager, M., Hsieh, YW., Jug, F., Tomancak, P. (2020). Registration of Multi-modal Volumetric Images by Establishing Cell Correspondence. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12535. Springer, Cham. https://doi.org/10.1007/978-3-030-66415-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66415-2_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66414-5

  • Online ISBN: 978-3-030-66415-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics