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Abstract. Unsupervised domain adaptation is a promising way to gen-
eralize deep models to novel domains. However the current literature
assumes that the label distribution is domain-invariant and only aligns
the feature distributions or vice versa. In this work, we explore the more
realistic task of Class-imbalanced Domain Adaptation: How to align fea-
ture distributions across domains while the label distributions of the two
domains are also different? Taking a practical step towards this prob-
lem, we constructed its first benchmark with 22 cross-domain tasks from
6 real-image datasets. We conducted comprehensive experiments on 10
recent domain adaptation methods and find most of them are very fragile
in the face of coexisting feature and label distribution shift. Towards a
better solution, we further proposed a feature and label distribution CO-
ALignment (COAL) model with a novel combination of existing ideas.
COAL is empirically shown to outperform most recent domain adapta-
tion methods on our benchmarks. We believe the provided benchmarks,
empirical analysis results, and the COAL baseline could stimulate and
facilitate future research towards this important problem.

1 Introduction

The success of deep learning models is highly dependent on the assumption that
the training and testing data are i.i.d and sampled from the same distribution.
In reality, they are typically collected from different but related domains, lead-
ing to a phenomenon known as domain shift [1]. To bridge the domain gap,
Unsupervised Domain Adaptation (UDA) transfers the knowledge learned from
a labeled source domain to an unlabeled target domain by statistical distribution
alignment [2,3] or adversarial alignment [4,5,6]. Though recent UDA works have
made great progress, most of them are under the assumption that the prior label
distributions of the two domains are identical. Denote the input data as x and
output labels as y, and let the source and target domain be characterized by
probability distributions p and q, respectively. The majority of UDA methods
assume that the conditional label distribution is invariant (p(y|x) = q(y|x)), and
only the feature shift (p(x) 6= q(x)) needs to be tackled, neglecting potential la-
bel shift (p(y) 6= q(y)) 1. However, we claim that this assumption makes current

? Work done while the author was visiting Boston University
1 Different from some works [7,8], we do not assume p(x|y) = q(x|y) for label shift.
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Fig. 1: We propose the Class-imbalanced Domain Adaptation setting, where we
consider feature shift and label shift simultaneously. We provide the first empiri-
cal evaluation of this setting, showing that existing UDA methods are very frag-
ile in the face of label shift. This is because learning marginal domain-invariant
features will incorrectly align samples from different categories, leading to neg-
ative transfer. We propose an alternate, more robust approach that combines
self-training and conditional feature alignment to tackle feature and label shift.

UDA methods not applicable in the real world, for the following reasons: 1) this
assumption hardly holds true in real applications, as label shift across domains
is commonly seen in the real world. For example, an autonomous driving system
should be able to handle constantly changing frequencies of pedestrians and cars
when adapting from a rural to a downtown area; or from a rainy to a sunny
day. In addition, it is hard to guarantee p(y) = q(y) without any information
about q(y) in the real world. 2) recent theoretical work [9] has demonstrated
that if label shift exists, current UDA methods could lead to significant perfor-
mance drop. This is also empirically proved by our experiments. 3) we cannot
check whether label shift exists in real applications. This prevents us from safely
applying current UDA methods because we cannot predict the potential risk of
performance drop. Therefore, we claim that an applicable UDA method must be
able to handle feature shift and label shift at the same time.

To formulate the above problem, we propose Class-imbalanced Domain
Adaptation (CDA), a more challenging but practical domain adaptation set-
ting where the conditional feature shift and label shift are required to be tackled
simultaneously. Specifically, in addition to Covariate Shift assumption (p(x) 6=
q(x), p(y|x) = q(y|x)), we further assume p(x|y) 6= q(x|y) and p(y) 6= q(y).
The main challenges of CDA are: 1) label shift hampers the effectiveness of
mainstream domain adaptation methods that only marginally aligns feature dis-
tributions, 2) aligning the conditional feature distributions (p(x|y), q(x|y)) is
difficult in the presence of label shift, and 3) when data in one or both of the
domains are unequally distributed across different categories, it is difficult to
train an unbiased classifier. An overview of CDA is shown in Figure 1.

Aligned with our idea, several works [10,11,12] provide theoretical analyses
on domain adaptation with both feature and label shift. However, they do not
provide sufficient empirical analysis of current UDA methods under this setting.
In addition, no practical algorithm that can solve real-world cross-domain prob-
lems has been proposed by these works. Therefore, although this problem has
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been known for years, most recent UDA methods are still not able to handle
it. In this paper, we aim raise concerns and interests towards this important
problem by taking one practical step. Firstly, we create CDA benchmarks with
22 cross-domain tasks across 6 real-world image classification datasets. We be-
lieve this would facilitate future domain adaptation research towards robustly
applicable methods. Secondly, we extensively evaluate 10 state-of-the-art domain
adaptation methods to analysis how well CDA is solved currently. We find most
of these methods cannot handle CDA well and often lead to negative transfer.
Thirdly, towards a better solution, we provide a theoretically-motivated novel
combination of existing ideas, which works well as a baseline for future research.

In this work, we visited domain adaptation methods in three categories.
Mainstream unsupervised domain adaptation aligns the feature distributions
of two domains by methods that include minimizing the Maximum Mean Dis-
crepancy [2,3], aligning high-order moments [13,14], or adversarial training [4,5].
However, these models are limited when applied to the CDA task as they only
align the feature distribution, ignoring the issue of label shift [9]. Another line
of works [7,8] assume that only label shift exists (p(y) 6= q(y)) between two
domains and the conditional feature distribution is invariant (p(x|y) = q(x|y)).
These methods have achieved good performance when the data in both domains
are sampled from the same feature distribution but under different label distribu-
tions. However, these models cannot handle the CDA task as the feature distribu-
tion is not well aligned. Recently, several works consider the domain adaptation
problem where the categories of the source and target domain are not fully over-
lapped [15,16,17]. This setting can be seen as a special case of CDA where for
some class i we have either p(y = i) = 0 or q(y = i) = 0. In our experiments,
we showed that 8 out of 10 methods we evaluated on CDA tasks frequently lead
to negative transfer (produce worse performance than no-adaptation baseline),
while the rest methods only leads to limited improvement over the baseline on
average. This limited performance showed that current UDA methods are not
robust enough to be practically applied, and motivated us to reconsider the
solution to the CDA problem.

We postulate that it is essential to align the conditional feature distribu-
tions as well as the label distributions to tackle the CDA task. In this work, we
address CDA with feature distribution and label distribution CO-ALignment
(COAL). Specifically, to deal with feature shift and label shift in an unified way,
we proposed a simple baseline method that combines the ideas of prototype-based
conditional distribution alignment [18] and class-balanced self-training [19]. First,
to tackle feature shift in the context of label shift, it is essential to align the con-
ditional rather than marginal feature distributions, to avoid the negative transfer
effects caused by matching marginal feature distributions [9] (illustrated in Fig-
ure 1). To this end, we use a prototype-based method to align the conditional
feature distributions of the two domains. The source prototypes are computed
by learning a similarity-based classifier, which are moved towards the target
domain with a minimax entropy algorithm [18]. Second, we align the label dis-
tributions in the context of feature shift by training the classifier with estimated
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target label distribution through a class-balanced self-training method [19]. We
incorporate the above feature distribution and label distribution alignment into
an end-to-end deep learning framework, as illustrated in Figure 2. Comprehen-
sive experiments on standard cross-domain recognition benchmarks demonstrate
that COAL achieves significant improvements over the state-of-the-art methods
on the task of CDA.

The main contributions of this paper are highlighted as follows: 1) to the best
of our knowledge, we provide the first set of benchmarks and practical solution
for domain adaptation under joint feature and label shift in deep learning, which
is important for real-world applications; 2) we deliver extensive experiments to
demonstrate that state-of-the-art methods fail to align feature distribution in the
presence of label distribution, or vise versa; 3) we propose a simple yet effective
feature and label distribution CO-ALignment (COAL) framework, which could
be a useful baseline for future research towards practical domain adaptation.
We believe the provided benchmarks, empirical analysis and the baseline model
could trigger future research works towards more practical domain adaptation.

2 Related Work

Domain Adaptation for Feature Shift Domain adaptation aims to transfer
the knowledge learned from one or more source domains to a target domain.
Recently, many unsupervised domain adaptation methods have been proposed.
These methods can be taxonomically divided into three categories [20]. The first
category is the discrepancy-based approach, which leverages different measures
to align the marginal feature distributions between source and target domains.
Commonly used measures include Maximum Mean Discrepancy (MMD) [21,22],
H-divergence [23], Kullback-Leibler (KL) divergence [24], and Wasserstein dis-
tance [25,26]. The second category is the adversarial-based approach [4,27,28]
which uses a domain discriminator to encourage domain confusion via an ad-
versarial objective. The third category is the reconstruction-based approach.
Data are reconstructed in the new domain by an encoder-decoder [29,30] or a
GAN discriminator, such as dual-GAN [31], cycle-GAN [32], disco-GAN [33], and
CyCADA [34]. However, these methods mainly consider aligning the marginal
distributions to decrease feature shift, neglecting label shift. To the best of our
knowledge, we are the first the propose an end-to-end deep model to tackle both
of the two domain shifts between the source and target domains.
Domain Adaptation for Label Shift Despite its wide applicability, learning
under label shift remains under-explored. Existing works tackle this challenge
by importance reweighting or target distribution estimation. Specifically, [10]
exploit importance reweighting to enhance knowledge transfer under label shift.
Recently, [35] introduce a test distribution estimator to detect and correct for
label shift. These methods assume that the source and target domains share the
same feature distributions and only differ in the marginal label distribution. In
this work, we explore transfer learning between domains under label shift and
label shift simultaneously. As a special case of label shift, some works consider
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the domain adaptation problem where the categories in the source domain and
target domain are not fully overlapped. [36] propose open set domain adaptation
where the class set in the source domain is a proper subset of that of the target
domain. Conversely, [15] introduce partial domain adaptation where the class
set of the source domain is a proper superset of that of the target domain. In
this direction, [37] introduce a theoretical analysis to show that only learning
domain-invariant features is not sufficient to solve domain adaptation task when
the label priors are not aligned. In a related work, [12] propose asymmetrically-
relaxed distribution alignment to overcome the limitations of standard domain
adaptation algorithms which aims to extract domain-invariant representations.
Domain adaptation with self-training In domain adaptation, self-training
methods are often utilized to compensate for the lack of categorical informa-
tion in the target domain. The intuition is to assign pseudo-labels to unlabeled
samples based on the predictions of one or more classifiers. [38] leverage an
asymmetric tri-training strategy to assign pseudo-labels to the unlabeled target
domain. [39] propose to assign pseudo-labels to all target samples and use them
to achieve semantic alignment across domains.

Recently, [40] propose to progressively label the target samples and align the
prototypes of source domain and target domain to achieve domain alignment.
However, to the best of our knowledge, self-training has not been applied for DA
with label shift.

3 CO-ALignment of Feature and Label Distribution

In Class-imbalanced Domain Adaptation, we are given a source domain DS =
{(xsi , ysi )Ns

i=1} with Ns labeled examples, and a target domain DT = {(xti)
Nt
i=1}

with Nt unlabeled examples. We assume that p(y|x) = q(y|x) but p(x|y) 6=
q(x|y), p(x) 6= q(x), and p(y) 6= q(y). We aim to construct an end-to-end deep
neural network which is able to transfer the knowledge learned from DS to DT ,
and train a classifier y = θ(x) which can minimize task risk in target domain
εT (θ) = Pr(x,y)∼q[θ(x) 6= y].

Previous works either focus on aligning the marginal feature distributions
[2,4] or aligning the label distributions [35]. These approaches are not able to fully
tackle CDA as they only align one of the two marginal distributions. Motivated
by theoretical analysis, in this work we propose to tackle CDA with feature
distribution and label distribution CO-ALignment. To this end, we combine
the ideas of prototype-based conditional alignment [18] and class-balanced self-
training [19] to tackle feature and label shift respectively. An overview of COAL
is shown in Figure 2.

3.1 Theoretical Motivations

Conditional Feature Alignment According to [37], the target error in do-
main adaptation is bounded by three terms: 1) source error, 2) the discrepancy
between the marginal distributions and 3) the distance between the source and
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Fig. 2: Overview of the proposed COAL model. Our model is trained iter-
atively between two steps. In step A, we forward the target samples through our
model to generate the pseudo labels and mask. In step B, we train our models
by self-training with the pseudo-labeled target samples to align the label distri-
butions, and prototype-based conditional alignment with the minimax entropy.

target optimal labeling functions. Denote h ∈ H as the hypothesis, εS(·) and
εT (·) as the expected error of a labeling function on source and target domain,
and fS and fT as the optimal labeling functions in the source and target domain.
Then, we have:

εT (h) ≤ εS(h) + dĤ(DS ,DT ) + min{εS(fT ), εT (fS)}, (1)

where dĤ denote the discrepancy of the marginal distributions [37]. The bound
demonstrates that the optimal labeling functions fS and fT need to generalize
well in both domains, such that the term min{εS(fT ), εT (fS)} can be bounded.
Conventional domain adaptation approaches which only align marginal feature
distribution cannot guarantee that min{εS(fT ), εT (fS)} is minimized. This mo-
tivates us to align the conditional feature distribution, i.e. p(x|y) and q(x|y).
Class-balanced Self-training Theorem 4.3 in [37] indicates that the target
error εT (h) can not be minimized if we only align the feature distributions and
neglect the shift in label distribution. Denote dJS as the Jensen-Shannon(JS)
distance between two distributions, [37] propose:

εS(h) + εT (h) ≥ 1

2
(dJS(p(y), q(y))− dJS(p(x), q(x)))2 (2)

This theorem demonstrates that when the divergence between label distribu-
tions dJS(p(y), q(y)) is significant, minimizing the divergence between marginal
distributions dJS(p(x), q(x)) and the source task error εS(h) will enlarge the
target task error εT (h). Motivated by this, we propose to estimate and align the
empirical label distributions with a self-training algorithm.

3.2 Prototype-based Conditional Alignment for Feature Shift

The mainstream idea in feature-shift oriented methods is to learn domain-invariant
features by aligning the marginal feature distributions, which was proved to be
inferior in the presence of label shift [9]. Instead, inspired by [18], we align the
conditional feature distributions p(x|y) and q(x|y). To this end, we leverage a
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similarity-based classifier to estimate p(x|y), and a minimax entropy algorithm
to align it with q(x|y). We achieve conditional feature distribution alignment by
aligning the source and target prototypes in an adversarial process.

Similarity-based Classifier The architecture of our COAL model contains a
feature extractor F and a similarity-based classifier C. Prototype-based clas-
sifiers perform well in few-shot learning settings [41], which motivates us to
adopt them since in label-shift settings some categories can have low frequen-
cies. Specifically, C is composed of a weight matrix W ∈ Rd×c and a temperature
parameter T , where d is the dimension of feature generated by F , and c is the
total number of classes. Denote W as [w1,w2, ...,wc], this matrix can be seen
as c d-dimension vectors, one for each category. For each input feature F (x), we

compute its similarity with the ith weight vector as si = F (x)wi

T‖F (x)‖ . Then, we com-

pute the probability of the sample being labeled as class i by hi(x) = σ( F (x)wi

T‖F (x)‖ ),

normalizing over all the classes. Finally, we can compute the prototype-based
classification loss for DS with standard cross-entropy loss:

LSC = E(x,y)∈DS
Lce(h(x), y) (3)

The intuition behind this loss is that the higher the confidence of sample x
being classified as class i, the closer the embedding of x is to wi. Hence, when
optimizing Equation 3, we are reducing the intra-class variation by pushing the
embedding of each sample x closer to its corresponding weight vector in W. In
this way, wi can be seen as a representative data point (prototype) for p(x|y = i).

Conditional Alignment by Minimax Entropy Due to the lack of categorical
information in the target domain, it is infeasible to utilize Equation 3 to obtain
target prototypes. Following [18], we tackle this problem by 1) moving each
source prototype to be closer to its nearby target samples, and 2) clustering
target samples around this moved prototype. We achieve these two objectives
jointly by entropy minimax learning. Specifically, for each sample xt ∈ DT fed
into the network, we can compute the mean entropy of the classifier’s output by

LH = Ex∈DT H(x) = −Ex∈DT

c∑
i=1

hi(x) log hi(x). (4)

Larger H(x) indicates that sample x is similar to all the weight vectors (proto-
types) of C. We achieve conditional feature distributions alignment by aligning
the source and target prototypes in an adversarial process: (1) we train C to
maximize LH , aiming to move the prototypes from the source samples towards
the neighboring target samples; (2) we train F to minimize LH , aiming to make
the embedding of target samples closer to their nearby prototypes. By training
with these two objectives as a min-max game between C and F , we can align
source and target prototypes. Specifically, we add a gradient-reverse layer [5]
between C and F to flip the sign of gradient.
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3.3 Class-balanced Self-training for Label Shift

As the source label distribution p(y) is different from that of the target q(y),
it is not guaranteed that the classifier C which has low risk on DS will have
low error on DT . Intuitively, if the classifier is trained with imbalanced source
data, the decision boundary will be dominated by the most frequent categories in
the training data, leading to a classifier biased towards source label distribution.
When the classifier is applied to target domain with a different label distribution,
its accuracy will degrade as it is highly biased towards the source domain. To
tackle this problem, we use the method in [19] to employ self-training to estimate
the target label distribution and refine the decision boundary. In addition, we
leverage balanced sampling of the source data to further facilitate this process.

Self-training In order to refine the decision boundary, we propose to estimate
the target label distribution with self-training. We assign pseudo labels ŷ to
all the target samples according to the output the classifier C. As we are also
aligning the conditional feature distributions (p(x|y) and q(x|y)), we assume
that the distribution of high-confidence pseudo labels q(ŷ) can be used as an
approximation of the real label distribution q(y) for the target domain. Training
C with these pseudo-labeled target samples under approximated target label
distribution, we are able to reduce the negative effect of label shift.

To obtain high-confidence pseudo labels, for each category, we select top k%
of the target samples with the highest confidence scores belonging to that cate-
gory. We utilize the highest probability in h(x) as the classifier’s confidence on
sample x. Specifically, for each pseudo-labeled sample (x, ŷ), we set its selection
mask m = 1 if h(x) is among the top k% of all the target samples with the
same pseduo-label, otherwise m = 0. Denote the pseudo-labeled target set as
D̂T = {(xti, ŷti ,mi)

Nt
i=1}, we leverage the input and pseudo labels from D̂T to

train the classifier C, aiming to refine the decision boundary with target label
distribution. The total loss function for classification is:

LST = LSC + E(x,ŷ,m)∈D̂T
Lce(h(x), ŷ) ·m (5)

where ŷ indicates the pseudo labels and m indicates selection masks. In our
approach, we choose the top k% of the highest confidence target samples within
each category, instead of universally. This is crucial to estimate the real target
label distribution, otherwise, the easy-to-transfer categories will dominate D̂T ,
leading to inaccurate estimation of the target label distribution [19]. As training
processes, we are able to obtain pseudo labels with higher accuracy. Therefore, we
increase k by kstep after each epoch until it reaches a threshold kmax. Typically,
we initialize k with k0 = 5, and set kstep = 5, kmax = 30.

Balanced Sampling of Source Data When coping with label shift, the label
distribution of the source domain could be highly imbalanced. A classifier trained
on imbalanced categories will make highly-biased predictions for the samples
from the target domain [42]. This effect also hinders the self-training process
discussed above, as the label distribution estimation will also be biased. To tackle
these problems, we apply a balanced mini-batch sampler to generate training
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data from the source domain and ensure that each source mini-batch contains
roughly the same number of samples for each category.

3.4 Training Process

In this section, we combine the above ideas into an end-to-end training pipeline.
Denote α as the trade-off between classifier training and feature distribution
alignment, we first define the adaptive learning objective as follows:

Ĉ = arg min
C

LST − αLH , F̂ = arg min
F

LST + αLH . (6)

Given input samples from source domain DS and target domain DT , we first
pretrain our network F and C with only labeled data DS . Then, we iterate
between pseudo-label assignment (step A) and adaptive learning (step
B). We update the pseudo labels in each epoch as we obtain better feature
representations from adaptive learning, which leads to more accurate pseudo
labels. On the other hand, better pseudo labels could also facilitate adaptive
learning in the next epoch. This process continues until convergence or reaching
the maximum number of iterations. An overview of it is shown in Figure 2.

4 Experiments

In this section, we first construct the CDA benchmarks with 26 cross-domain
adaptation tasks based on 4 Digits datasets, Office-Home [43] and Domain-
Net [14]. Then we evaluate and analysis 10 representative state-of-the-art do-
main adaptation methods as well as our COAL baseline. Finally, we provide
additional analysis experiments to further explore the CDA problem.

4.1 Class-imbalanced Domain Adaptation Benchmark

Domain Shift Protocol. Because the images use are already collected from
separate feature domains, we only create label shift for each cross-domain task.
To create label shift between source and target domains, we sub-sample the cur-
rent datasets with Reversely-unbalanced Source and Unbalanced Target (RS-
UT) protocol. In this setting, both the source and target domains have unbal-
anced label distribution, while the label distribution of the source domain is a
reversed version of that of the target domain. Following [44], the unbalanced
label distribution is created by sampling from a Paredo distribution [45]. An
illustration of this setting can be found in Figure 3(b). We refer our reader to
supplementary material for detailed data splits and creation process.
Digits. We select four digits datasets: MNIST [46], USPS [47], SVHN [48] and
Synthetic Digits (SYN) [49] and regard each of them as a separate domain. In
this work, we investigate four domain adaptation tasks: MNIST → USPS,
USPS → MNIST, SVHN → MNIST, and SYN → MNIST.
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Fig. 3: (a): Image examples from Digits, Office-Home [43], and DomainNet [14].
(b): illustrations of Reversely-unbalanced Source (RS) and Unbalanced Target
(UT) distribution in MNIST→USPS task. (c): Natural label shift of DomainNet.

Office-Home [43] is a dataset collected in office and home environment with 65
object classes and four domains: Real World (Rw), Clipart (Cl), Product (Pr),
Art (Ar). Since the “Art” domain is too small to sample an imbalanced subset,
we focus on the remaining domains and explore all the six adaptation tasks.
DomainNet [14] is a large-scale testbed for domain adaptation, which con-
tains six domains with about 0.6 million images distributed among 345 classes.
Since some domains and classes contains many mislabeled outliers, we select 40
commonly-seen classes from four domains: Real (R), Clipart (C), Painting (P),
Sketch (S). Different from the two datasets above, the existed label shift in Do-
mainNet is significant enough, as illustrated in Figure 3(c). Therefore, we use
the original label distributions without sub-sampling for this dataset.
Evaluated Methods. To form a comprehensive empirical analysis, we eval-
uated recent domain adaptation methods from three categories, including 1)
conventional UDA methods that only aligns feature distribution: DAN [2],
JAN [21], DANN [5], MCD [6] and BSP [50]; 2) method that only aligns
label distribution: BBSE[35]; 3) methods that align feature distribution while
assuming non-overlapping label spaces: PADA [15], ETN [16] and UAN [17].
We also evaluated FDANN [12], which relaxes the feature distribution align-
ment objective in DANN to deal with potential label shift.
Implementation Details. We implement all our experiments in Pytorch plat-
form. We used the official implements for all the evaluated methods except for
DANN [5], BBSE [35] and FDANN [12], which are reproduced by ourselves.
For fair comparison, we use the same backbone networks for all the methods.
Specifically, for the Digits dataset, we adopt the network architecture proposed
by [6]. For the other two datasets, we utilize ResNet-50 [51] as our backbone
network, and replace the last fully-connected layer with a randomly initialized
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Methods USPS→MNIST MNIST→USPS SVHN→MNIST SYN →MNIST AVG

Source Only 75.31±0.09 87.92±0.74 50.25±0.81 85.74±0.49 74.81

UAN (2019) 55.72±2.06 83.23±0.75 50.20±1.75 71.26±2.82 65.10
ETN (2019) 62.85±2.20 79.27±1.29 52.82±1.50 72.42±6.53 66.84
FDANN (2019) 72.59±1.61 81.62±2.38 45.65±2.93 82.07±1.65 70.48
JAN (2017) 75.75±0.75 78.82±0.93 53.21±3.94 75.64±1.42 70.86
BBSE (2018) 75.01±3.68 78.84±10.73 49.01±2.02 85.69±0.71 72.14
BSP (2019) 71.99±1.52 89.74±0.77 50.61±1.67 77.30±1.20 72.41
PADA (2018) 73.66±0.15 78.59±0.23 54.13±1.61 85.06±0.60 72.86
MCD (2018) 77.18±5.65 85.34±4.07 53.52±4.23 76.37±3.48 73.10
DAN (2015) 79.12±1.34 87.15±1.71 53.63±1.80 80.89±2.00 75.20
DANN (2015) 77.28±2.13 91.88±0.74 57.16±1.83 77.60±1.29 75.98

COAL (Ours) 88.12±0.37 93.04±1.67 65.67±1.29 90.60±0.44 84.33

Table 1: Per-class mean accuracy on Digits. Our model achieves 84.33% average
accuracy across four tasks, outperforming other evaluated methods.

Methods Rw→Pr Rw→Cl Pr→Rw Pr→Cl Cl→Rw Cl→Pr AVG

SourceOnly 70.75 35.51 65.65 34.99 51.27 51.11 51.55

BSP (2019) 66.15 23.48 65.42 20.81 34.54 31.04 40.24
PADA (2018) 60.77 32.28 57.09 26.76 40.71 38.34 42.66
BBSE (2018) 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD (2018) 66.18 32.32 62.66 28.40 41.41 38.59 44.93
DAN (2015) 67.85 38.17 66.86 34.24 52.95 51.64 45.02
UAN (2019) 70.85 41.15 67.26 36.82 56.24 55.77 48.62
ETN (2019) 71.69 34.03 70.45 40.74 60.48 55.19 52.14
FDANN (2019) 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN (2017) 71.22 43.12 68.20 37.03 57.97 56.80 55.72
DANN (2015) 71.78 46.08 67.98 39.45 58.40 57.39 56.85

COAL (Ours) 73.65 42.58 74.46 40.61 59.22 62.71 58.87

Table 2: Per-class mean accuracy on Office-Home dataset. Our model achieve
58.87% average accuracy across six tasks.

N-way classifier layer (for N categories). For all the compared methods, we select
their hyper-parameters on the validation set of P→C task of DomainNet. We
refer our reader to supplementary material for code and parameters of COAL.
Evaluation metric. When the target domain is highly unbalanced, conven-
tional overall average accuracy that treats every class uniformly is not an ap-
propriate performance metric [52]. Therefore, we follow [53] to use the per-class
mean accuracy in our main results. Formally, we denote Si =

n(i,i)

ni
as the accu-

racy for class i, where n(i,j) represents the number of class i samples labeled as
class j, and ni =

∑c
j=1 n(i,j) represents the number of samples in class i. Then,

the per-class mean accuracy is computed as S = 1
c

∑c
i=1 Si.

4.2 Result Analysis

We first show the experimental results on Digits datasets in Table 1. From the
results, we can make the following observations: (1) Most current domain adap-
tation methods cannot solve CDA well. On average, 8 of the 10 evaluated domain
adaptation methods perform worse than the source-only baselines, leading to
negative transfer. This result confirmed the theoretical analysis that only align-
ing marginal feature distribution leads to performance drop under CDA [9]. (2)
Method that achieve better results on conventional UDA benchmarks does not
lead to better results on CDA problem. For example, although MCD is shown to
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Method R→C R→P R→S C→R C→P C→S P→R P→C P→S S→R S→C S→P AVG

Baseline 58.84 67.89 53.08 76.70 53.55 53.06 84.39 55.55 60.19 74.62 54.60 57.78 62.52

BBSE 55.38 63.62 47.44 64.58 42.18 42.36 81.55 49.04 54.10 68.54 48.19 46.07 55.25
PADA 65.91 67.13 58.43 74.69 53.09 52.86 79.84 59.33 57.87 76.52 66.97 61.08 64.48
MCD 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
DAN 64.36 70.65 58.44 79.44 56.78 60.05 84.56 61.62 62.21 79.69 65.01 62.04 67.07
FDANN 66.15 71.80 61.53 81.85 60.06 61.22 84.46 66.81 62.84 81.38 69.62 66.50 69.52
UAN 71.10 68.90 67.10 83.15 63.30 64.66 83.95 65.35 67.06 82.22 70.64 68.09 72.05
JAN 65.57 73.58 67.61 85.02 64.96 67.17 87.06 67.92 66.10 84.54 72.77 67.51 72.48
ETN 69.22 72.14 63.63 86.54 65.33 63.34 85.04 65.69 68.78 84.93 72.17 68.99 73.99
BSP 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
DANN 63.37 73.56 72.63 86.47 65.73 70.58 86.94 73.19 70.15 85.73 75.16 70.04 74.46

Ours 73.85 75.37 70.50 89.63 69.98 71.29 89.81 68.01 70.49 87.97 73.21 70.53 75.89

Table 3: Per-class mean accuracy on DomainNet dataset with natural label shifts.
Our method achieve 75.89% average accuracy across the 12 experiments. Note
that DomainNet contains about 0.6 million images, it is non-trivial to have even
one percent performance boost.

significantly outperform DAN and DANN on several conventional domain adap-
tation benchmarks [6], its performance is inferior to these older methods in our
experiment. We argue that this is because these newer methods achieve better
marginal feature distribution alignment, which yet leads to worse performance
under label shift. (3) Our COAL baseline achieves 84.33% average accuracy
across four experimental setting, outperforming the best-performing method by
8.4%. This result demonstrate that aligning only the feature distributions or only
the label distributions can not fully tackle CDA task. In contrast, our framework
co-aligns the conditional feature distributions and label distributions.

Next, we show the experimental results on more challenging real-object
datasets, i.e., Office-Home and DomainNet, in Table 2 and Table 3, respectively.
In Office-Home experiments, we can also have the above observations. For ex-
ample, we observe that 7 out of 10 methods lead to negative transfer, which
is consistent with the results on Digits dataset. Our COAL framework achieves
58.87% average accuracy across the six CDA tasks, outperforming other evalu-
ated methods, and has 7.32% improvement from the source-only result.

In DomainNet experiments, due to smaller degree of label shift, most evalu-
ated methods could outperform the source-only baseline. However, we still ob-
serve the negative influence of label shift. First, we observe inferior performance
of newer methods to older methods. For example, DANN outperformed MCD
by 9.04%, due to the negative effect of stronger marginal alignment in MCD.
Moreover, our model get 75.89% average accuracy across the 12 tasks, outper-
forming all the compared baselines. This shows the effectiveness of feature and
label distribution co-alignment in this dataset. Furthermore, we carefully tuned
the hyper-parameters for the evaluated domain adaptation methods to have
weaker feature distribution alignment 2. If we directly apply the parameters set
by the authors, many of these models have much worse performance.

2 Please refer to supplementary material for details.
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Methods
U→M S→M Pr→Cl Cl→Rw R→S

w/o with w/o with w/o with w/o with w/o with

SourceOnly 71.35 75.31 50.35 50.25 34.99 34.99 50.64 51.11 50.16 53.08
DAN 64.81 79.12 22.05 53.63 32.93 34.24 45.18 51.64 64.78 58.44
DANN 42.77 77.28 27.60 57.16 35.17 39.45 47.19 58.40 68.92 72.63
MCD 20.15 77.18 44.83 53.52 33.06 28.40 49.57 41.41 58.50 56.26

COAL 87.50 88.12 60.12 65.67 34.03 40.61 57.67 59.22 59.23 70.50

Table 4: The performance of five models w. or w/o. source balanced sampler.
We observe a significant performance boost when the source balanced sampler
is applied, both for our model and the compared baselines, demonstrating the
effectiveness of source balanced sampler to CDA task.

(a) Source Only (b) DAN (c) DANN (d) COAL

Fig. 4: t-SNE visualization for features Source Only (baseline), DAN, DANN
and COAL on DomainNet task Real → Clipart. Blue and red points represents
features from the source domain and target domain, respectively.

4.3 Analysis

Effect of Source Balanced Sampler. Source balanced samplers described
in Section 3.3 can help us tackle the biased-classifier problem caused by the
imbalanced data distribution of source domain. A significant performance boost
can be observed after applying the balanced sampler for our COAL model, as
well as the compared baselines. In this section, we specifically show the effect of
using source balanced samplers. We show in Table 4 the performance of several
methods with and without source balanced samplers on 5 adaptation tasks from
multiple datasets. We observe that for 20 of the total 25 tasks (5 models on 5
adaptation tasks), using source balanced samplers will significantly improve the
domain adaptation performance. These results show the effectiveness of having
a source balanced sampler when tackling CDA task.

Ablation Study. Our COAL method has mainly two objectives: 1) alignment of
conditional feature distribution LST and 2) alignment of label distribution LH To
show the importance of these two objectives in CDA, we show the performance
of our method without each of these objectives respectively on multiple tasks.
The results in Table 5 showed the importance of both objectives. For example,
for USPS→MNIST, if we remove the conditional feature distribution alignment
objective, the accuracy of our model will drop by 2.6%. Similarly, if we remove
the label distribution alignment objective, the accuracy will drop by 2.9%. These
results demonstrate that both the alignment of conditional feature distribution
and label distribution are important to CDA task.
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Methods U→M M→U S→M Cl→Rw Pr→Rw R→C R→P P→R AVG

w/o LST 85.22 85.94 55.17 58.38 69.39 71.92 74.39 77.45 72.23
w/o LH 85.57 92.28 63.34 58.17 72.11 71.34 69.92 87.14 74.98

COAL 88.12 93.04 65.67 59.22 74.46 73.85 75.37 89.81 77.44

Table 5: Ablation study of different objectives in our method. We randomly
select 8 sets of experiments to perform the ablation study.

0% 20% 40% 60% 80% 100%
Label Shift

80

85

90
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cu
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DAN
DANN
MCD
Ours

Fig. 5: Performance on USPS→MNIST
task with different degrees of label shift. 0%
and 100% denote the BS-BT and RS-UT
settings respectively. Others are the linear
interpolations of BS-BT and RS-UT.

Different Degrees of Label Shift.
In Section 4, we only investigated the
performance of each method under a
certain degree of label shift in each
dataset. In this section, we investigate
the effect of different degrees of label
shift. Specifically, we create 4 interval
degrees of label shift between the BS-
BT (Blanced Source and Blanced
Target) and RS-UT setting. To this
end, we compute the proportions of
each category by linear interpolation
between its proportions in BS-BT and
RS-UT. We denote BS-BT and RS-
UT as 0% and 100% degree of label
shift respectively, and create datasets with label shifts of 20%, 40%, 60% and
80% by linear interpolation. For fair comparison, all the datasets have the same
total amount of samples. With these datasets, we evaluated the performance of
different methods on the USPS→MNIST task. The results in Figure 5 show that
the performance of previous domain adaptation methods will be significantly af-
fected by label shift. For example, the accuracy of MCD drastically drops from
91.45% to 77.18%. In contrast, the performance of COAL is much more stable,
which ranges between 93.42% and 88.12%. It shows that our framework is more
robust to different degrees of label shift.
Feature Visualization. In this section, we plot the learned features with t-SNE
[54] in Figure 4. We investigate the Real to Clipart task in DomainNet experi-
ment with ResNet-50 backbones. From (a)-(d), we observe that our method can
better align source and target features in each category, while other methods ei-
ther leave the feature distributions unaligned, or incorrectly aligned samples in
different categories. These results further show the importance of prototype-based
conditional feature alignment for CDA task.

5 Conclusion

In this paper, we first propose the Class-imbalanced Domain Adaptation(CDA)
setting and demonstrate its importance in practical scenarios. Then we provide
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the first benchmark of this problem, and conduct a comprehensive empirical
analysis on recent domain adaptation methods. The result shows that most
existing methods are fragile in the face of CDA, which prevents them from
being practically applied. Based on theoretical motivations, we propose a feature
distribution and label distribution co-alignment framework, which empirically
works well as a baseline for future research.

We believe this work takes an important step towards applicable domain
adaptation. We hope the provided benchmarks, empirical results and baseline
model would stimulate and facilitate future works to design robust algorithms
that can handle more realistic problems. An interesting research direction would
be better detecting and correcting label shift under feature shift.
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A Creation Details for Label Shift

In order to create unbalanced label distribution in each dataset, inspired by [44],
we follow the Paredo distribution set different proportions for each category.
By using this distribution, we can create long-tailed label distribution, which is
frequently seen in real applications and benchmarks [55,14].

The shape of Paredo distribution [45] is controlled by parameter α. Because
different datasets have different amount of samples, to avoid making some classes
in the unbalanced dataset to have too few samples, we use a different parameter
for each dataset. Specifically, we set α = 1 for Digits dataset, and α = 100 for
Office-Home dataset.

We further assign each computed proportion to each category by following
the descending order of the original class index. Specifically, in the target domain
of RS-UT, we assign the kth largest propotion to class k − 1, with class index
starting from 0. For Digits, we set the index of each class directly as the digit
it represents. For Office-Home, we set the class index in alphabetical ascending
order.

Please refer to the attached code for more details about the detailed list of
image files for each of the domain in the three datasets.

B COAL Implementation Details

For the Digits dataset, we adopt the network architecture proposed by [6]. We
adopt SGD with the momentum of 0.9 and learning rate of 0.01 for the linear
classifier and 0.001 for all other layers. The batch size is set as 32 for samples
from each domain. For USPS→MNIST, MNIST→USPS and SynD→MNIST, we
set the α = 0.1 in Equation 6 and set k0 = 20, kstep = 5, kmax = 50. For the
more challenging SVHN→MNIST, we set k0 = 5, kstep = 5, kmax = 10.

For OfficeHome and DomainNet, we utilize ResNet-50 [51] as our backbone
network, and replace the last fully-connected layer with a randomly initialized
N-way classifier layer (for N categories). We also use SGD with momentum of
0.9 while setting the learning rate to be 0.001 for linear layers and 0.0001 for
all the other layers. The batch size is set as 16 for each domain. We set the
α = 0.1 in Equation 6 and set k0 = 5, kstep = 5, kmax = 30 as the parameters
for self-training selection policy.

C Hyper-parameter setting for Compared Methods

We tune the hyper-parameters of each method on Painting → Clipart task in
DomainNet. Specifically, for DAN, JAN, FDANN and DANN we tune the weight
α of the marginal feature alignment loss. We empirically find that these method
achieve better performance when we set α to be 5-10 times lower than default.
Intuitively, it means that we can achieve better performance under generalized
domain shift setting if we relax the strength of marginal feature alignment. For
MCD we tune the number of feature generator updating times n.
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D Detailed information for datasets

We provide detailed information for datasets in Table 1.

Digits

Splits USPS MNIST SVHN SYN Total

Train 12,144 1,550 10,395 107,005 118,950
Test 2,181 459 3,554 2,114 8,308

Office-Home

Splits Real World Product Clipart Total

Total 1,253 2,045 1,017 4,315

DomainNet

Splits Real Painting Clipart Sketch Total

Train 16,141 6,727 3,707 5,537 32,112
Test 6,943 2,909 1,616 2,399 13,867

Table 1: Detailed information for datasets
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