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Abstract. In this paper we propose a sequential learning framework for
Domain Generalization (DG), the problem of training a model that is
robust to domain shift by design. Various DG approaches have been pro-
posed with different motivating intuitions, but they typically optimize
for a single step of domain generalization – training on one set of do-
mains and generalizing to one other. Our sequential learning is inspired
by the idea lifelong learning, where accumulated experience means that
learning the nth thing becomes easier than the 1st thing. In DG this
means encountering a sequence of domains and at each step training to
maximise performance on the next domain. The performance at domain
n then depends on the previous n−1 learning problems. Thus backprop-
agating through the sequence means optimizing performance not just
for the next domain, but all following domains. Training on all such se-
quences of domains provides dramatically more ‘practice’ for a base DG
learner compared to existing approaches, thus improving performance
on a true testing domain. This strategy can be instantiated for different
base DG algorithms, but we focus on its application to the recently pro-
posed Meta-Learning Domain generalization (MLDG). We show that for
MLDG it leads to a simple to implement and fast algorithm that provides
consistent performance improvement on a variety of DG benchmarks.

Keywords: Sequential learning · meta-learning · domain generalization.

1 Introduction

Contemporary machine learning algorithms provide excellent performance when
training and testing data are drawn from the same underlying distribution. How-
ever, it is often impossible to guarantee prior collection of training data that is
representative of the environment in which a model will be deployed, and the
resulting train-test domain shift leads to significant degradation in performance.
The long studied area of Domain Adaptation (DA) aims to alleviate this by
adapting models to the testing domain [3,38,19,8,20,4]. Meanwhile, the recently
topical area of Domain Generalization (DG) aims to build or train models that
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are designed for increased robustness to such domain-shift without requiring
adaptation [24,10,16,15,17,35,2].

A variety of DG methods have been proposed based on different intuitions.
To learn a domain-agnostic feature representation, some of these require specific
base learner architectures [24,10,14]. Others are model-agnostic modifications to
the training procedure of any base learner, for example by via data augmentation
[35,40]. Meta-learning (a.k.a learning to learn) has a long history [34,44], with
primary application to accelerating learning of new tasks [29,41]. Recently, some
researchers proposed meta-learning based methods for DG [15,2]. Different from
previous DG methods, these are designed around explicitly mimicking train-test
domain-shift during model training, to develop improved robustness to domain-
shift at testing. Such meta-learning has an analogy to human learning, where
a human’s experience of context change provides the opportunity to develop
strategies that are more agnostic to context (domain). If a human discovers that
their existing problem-solving strategy fails in a new context, they can try to
update their strategy to be more context independent, so that next time they
arrive in a new context they are more likely to succeed immediately.

While effective, recent meta-DG methods [15,2] provide a ‘single-step’ of DG
meta-learning: training on one set of training domains to optimize performance
on a disjoint set of ‘validation’ domains. However, in human lifelong learning,
such learning does not happen once, but sequentially in a continual learning
manner. Taking this perspective in algorithm design, one learning update from
domain n to n + 1 should have the opportunity to affect the performance on
every subsequent domain encountered, n + 2 onwards. Such continual learning
provides the opportunity for much more feedback to each learning update. In
backpropagation, the update at domain n→ n+ 1 can be informed by its down-
stream impact on all subsequent updates for all subsequent domains. In this
way we can generate more unique episodes for meta-learning, which has im-
proved performance in the more common few-shot applications of meta-learning
[39,41,21]. Specifically, in approaches that use a single-pass on all source do-
mains [14,23,8], DG models are trained once for a single objective. Approaches
doing one-step meta-learning [15,2] by rotating through meta-train and meta-
test (validation) domain splits of N source domains train DG with N distinct
domain-shift episodes. Meanwhile within our sequential learning DG framework,
by further simulating all possible sequential learning domain sequences, we train
with N ! distinct domain-shift episodes. This greater diversity of domain-shift
training experience enables better generalization to a final true testing domain.

Our proposed framework can be instantiated for multiple base DG algorithms
without modifying their underlying design. We focus on its instantiation for a
recent architecture-agonstic meta-learning based method MLDG [15], but also
show that it can be applied to a traditional architecture based method Undo
Bias [14]. In the case of MLDG, we show our sequential-learning generalization S-
MLDG, leads to a simple to implement and fast to train meta-learning algorithm
that is architecture agnostic and consistently improves performance on a variety
of DG benchmarks. This is achieved via a first-order approximation to the full
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S-MLDG, which leads to a shortest-path descent method analogous to Reptile
[26] in few-shot learning.

We summarise our contributions as follows:

– We propose a sequential learning framework for DG that can be applied to
different base DG methods. We show that it can be instantiated for at least
two different base DG methods, the architecture focused Undo-Bias [14], and
the architecture agnostic meta-learning algorithm MLDG [15].

– Our framework improves training by increasing the diversity of unique DG
episodes constructed for training the base learner, and enabling future changes
in continual-learning performance changes to back-propagate to earlier do-
main updates.

– We provide an analysis of the proposed S-MLDG, to understand the dif-
ference in optimization to the base MLDG algorithm, and to derive a fast
first-order approximation FFO-S-MLDG. This algorithm is simple to imple-
ment and fast to run, while performing comparably to S-MLDG.

– The resulting S-MLDG and FFO-S-MLDG algorithms provide state of the
art performance on three different DG benchmarks.

2 Related Work

Domain Adaptation (DA) Domain adaptation has received great attention
from researchers in the past decade [3,38,19,9,20,4,31,32]. Different from domain
generalization, domain adaptation assumes that unlabeled target domain data
is accessible at training. Various methods have been proposed to tackle domain-
shift by reducing discrepancy between source and target domain features. Rep-
resentative approaches include aligning domains by minimizing distribution shift
as measured by MMD [38,19], or performing adversarial training to ensure that
in the learned representation space the domains cannot be distinguished [9,32],
or learning generative models for cross-domain image synthesis [18,11]. However,
data may not be available for the target domain, or it may not be possible to
adapt the base model, thus requiring Domain Generalization.

Domain Generalization (DG) A diversity of DG methods have been pro-
posed in recent years [24,14,43,10,23,16,15,35,17,2,40]. These are commonly cat-
egorized according to their motivating inductive bias, or their architectural
assumptions. Common motivating intuitions include feature learning methods
[10,24,17] that aim to learn a representation that generates domain invariant
features; data augmentation-based methods that aim to improve robustness by
synthesizing novel data that better covers the space of domain variability com-
pared to the original source domains [40,35]; and fusion methods that aim to
perform well on test domains by recombining classifiers trained on diverse source
domains [43,22]. Meanwhile in terms of architecture, some methods impose con-
straints on the specific base classifier architecture to be used [24,14,10,16,43],
while others provide an architecture agnostic DG training strategy [2,35,40].
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Most of the above methods train a single set of source tasks for a DG objec-
tive. Recent meta-learning methods use the set of known source domains to simu-
late train-test domain-shift and optimize to improve robustness to domain-shift.
For example, via gradient alignment [15] or meta-optimizing a robust regular-
izer for the base model [2]. Our sequential learning framework aims to simulate
continual learning over a sequence of domains, and furthermore averages over
many such sequences. This provides a greater diversity of distinct domain-shift
experiences to learn from, and stronger feedback in the form of the impact of
a parameter change not just on the next validation domain, but its subsequent
impact on all domains in the continual learning sequence. We show that our
framework can be instantiated primarily for the meta-learning method MLDG
[15], but also for the classic architecture-specific method Undo-Bias [14], and its
recently proposed deep extension [16].

Meta-Learning Meta-Learning (learning to learn) has a long history [34].
It has recently become widely used in few-shot learning [1,29,7,25] applications.
A common meta-optimization strategy is to split training tasks into meta-train
and meta-test (validation) task sets, and meta-optimization aims to improve
the ability to learn quickly on meta-test tasks given the knowledge in meta-train
tasks. This is achieved through various routes, by learning a more general feature
embedding [39,37], learning a more efficient optimizer [1,29], or even simply
learning an effective initial condition for optimization [7,26]. Several gradient-
based meta-learners induce higher-order gradients that increase computational
cost, for example MAML [7]. This inspired other studies to develop first order
approximations for faster meta-learning; such as Reptile [26] that accelerates
MAML. While all these methods meta-optimize for fast adaptation to new tasks,
we aim to optimize for domain-generalization: training a model such that it
performs well on a novel domain with no opportunity for adaptation. We take
inspiration from Reptile [26] to develop a fast implementation of our proposed
S-MLDG.

Lifelong Learning Our sequential learning is inspired by the vision of life-
long learning (LLL) [28,30,33,21] . LLL methods focus on how to accelerate
learning of new tasks given a series of sequentially learned previous tasks (and
often how to avoid forgetting old tasks). We leverage the idea of optimizing for
future performance in a sequence. But different to prior methods: (i) we focus on
optimizing for domain invariance, rather than optimizing for speed of learning a
new task, and (ii) we back-propagate through the entire sequence of domains so
that every update step in the sequence is driven by improving the final domain
invariance of the base model. It is important to note that while most lifelong
and continual learning studies are oriented around designing a method that is
deployed in a lifelong learning setting, we address a standard problem setting
with a fixed set of source and target (testing) domains. We aim to use sequential
training within our given source domains to learn a more robust model that
generalizes better to the true testing domain. To this end, since different po-
tential learning sequences affect the outcome in lifelong learning [27], we aim to
generate the most unique learning experiences to drive training by simulating all



Sequential Learning for Domain Generalization 5

possible sequences through our source domains and optimizing for their expected
outcome.

3 Domain Generalization Background

In the domain generalization problem setting, a learner receives N labelled do-
mains (datasets) D = [D1,D2, · · · ,DN ] where Di = (Xi, yi), and aims to pro-
duce a model that works for a different unseen domain D∗ at testing. We first
introduce a simple baseline for DG .

Aggregation Baseline A simple baseline for DG is to aggregate all domains’
data and train a single model on Dagg = D1∪D2∪· · ·∪DN . Although not always
compared, this obvious baseline often outperforms earlier published DG methods
when applied with deep learning [16].

Base Methods Our sequential learning framework can be applied to general-
ize MLDG [15] and shallow [14] or deep [16] Undo-Bias. Due to space constraints,
we focus on the application to MLDG, and leave application to Undo-Bias to
Appendix B.

3.1 Meta-Learning Domain Generalization

In contrast to many DG methods [14,16,17,35], which require special designs of
model architectures, Meta-Learning Domain Generalization (MLDG) [15] pro-
poses an optimization method to achieve DG that is agnostic to base learner
architecture. The idea is to mimic (during training) the cross-domain training
and testing encountered in the DG setting – by way of meta-training and meta-
testing steps.

In each iteration of training it randomly selects one domain Dk, k ∈ [1, N ]
and uses it as the meta-test domain, i.e. Dmtst ← Dk (here Dmtst can be seen
as a kind of virtual test domain), and aggregates the remaining to construct the
meta-train domain, i.e., Dmtrn ← ∪

i 6=k
Di.

Following the intuition that meta-test will be used to evaluate the effect of
the model optimization on meta-train at each iteration, MLDG aims to optimize
both the loss on meta-train L1 = L(Dmtrn, θ), and loss on meta-test after up-
dating on meta-train L2 = L(Dmtst, θ − α · ∇θL1) by one gradient descent step
α · ∇θL1 with step size α, where L(.) is the cross-entropy loss here. Overall this
leads to optimization of

argmin
θ

L1(Dmtrn, θ) + βL2(Dmtst, θ − α∇θL1). (1)

After training, the base model with parameters θ will be used for true unseen
test domain.
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Fig. 1: Schematic illustration of our domain generalization training framework.
A base DG method is trained at every step in a sequence of domains. And this
is repeated over different random sequences.

4 Sequential Learning Domain Generalization

Domain generalization methods mostly aim to achieve minL(D∗|Dtrain). I.e., low
loss on a testing domain D∗ after training on a set of training domains Dtrain.
Of course this can not be optimized in the conventional way since the target D∗
is not available, so various methods [14,10,24] attempt to achieve this indirectly
by various kinds of multi-domain training on the domains in Dtrain. As outlined
in the previous section, meta-learning approaches such as MLDG aim to achieve
this by finding a model that performs well over many different meta-train and
meta-test splits of the true training domains: minE(Dmtrn,Dmtst)∼DtrainL(Dmtst|Dmtrn).
Inspired by the idea of human lifelong learning-to-learn [36] and the benefit of
providing ‘more practice’ [5,13], we propose to optimize the performance of a
sequentially learned DG model at every step of a trajectory p through the do-
mains, averaged over all possible trajectories P. As illustrated in Fig. 1, this
corresponds to:

minEp∼P
∑
d∈p

L(Dd|D[:d)) (2)

Here L(Dd|D[:d)) denotes the performance on meta-test domain d given a DG
model which has been sequentially trained on meta-train domains before the
arrival of domain d, and p denotes the sequential trajectory. This covers N ! dis-
tinct DG learning problems (at each incremental step of each possible trajectory
p), since the order of the path through any fixed set of source domains matters.
The framework is DG-algorithm agnostic in that does not stipulate which DG
algorithm should be used at each step. Any base DG algorithm which can be
sequentially updated could be used. In this paper we show how to instantiate
this idea for both Undo Bias [14] and MLDG [15] DG algorithms.

4.1 Sequential Learning MLDG (S-MLDG)

Vanilla MLDG already optimizes an expectation over meta-train/meta-test splits
over the source domains (Section 3.1). At every iteration, it randomly samples
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Algorithm 1: S-MLDG: Sequential Learning MLDG
Input:D = [D1,D2, . . . ,DN ] N source domains.
Initialize: α, β ,γ and θ
while not done training do

p = shuffle([1, 2, . . . , N ])
D̃ = [D̃1, D̃2, . . . , D̃N ] //Sample mini-batches D̃i
L = L(D̃p[1], θ)
for i in [2, 3, . . . , |p|] do
L += β

(
L(D̃p[i], θ − α∇θL)

)
//Inner-loop update

end
Update θ := θ − γ∇θL //Meta update

end
Output: θ

one domain as meta-test, and keeps the others as meta-train. But within the
meta-train domains, it simply aggregates them. It does not exploit their domain
grouping. To instantiate our hierarchical training framework (Eq. 2) for MLDG
we imagine recursively applying MLDG. For a given meta-test/meta-train split,
we apply MLDG again within the meta-train split until there is only a single
domain in the meta-train set. This simulates a lifelong DG learning process,
where we should succeed at DG between the first and second training domains,
and then the result of that should succeed at DG on the third training domain
etc. The objective function to optimize for S-MLDG is:

LS-MLDG = Ep∼P L1(Dp[1], θ)

+β

N∑
i=2

Li(Dp[i], θ − α∇θ
i−1∑
j=1

Lj)

= Ep∼P L1(Dp[1], θ)
+βL2(Dp[2], θ − α∇θL1)

+βL3(Dp[3], θ − α∇θ
2∑
j=1

Lj) + ...

+βLN (Dp[N ], θ − α∇θ
N−1∑
j=1

Lj)

(3)

The optimization is carried out over all possible paths p through the training
domains. MLDG is model-agnostic and computes a single parameter θ for all
domains, so the final θ after optimization is used for inference on unseen domains.
The overall algorithm is shown in Alg. 1.
MLDG The MLDG mechanism was originally analyzed [15] via a first-order
Taylor series. Since MLDG only does one-step DG validation, one domain is
sampled as meta-test to split the source domains. Then the objective function is

LMLDG =L1(Dmtrn, θ) + βL2(Dmtst, θ − α∇θL1) (4)
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Algorithm 2: Faster First-Order S-MLDG
Input: D = [D1,D2, . . . ,DN ] N source domains.
Initialize: α, β, γ and θ
while not done training do

θ̃ = θ
p = shuffle([1, 2, . . . , N ])
D̃ = [D̃1, D̃2, . . . , D̃N ] //Sample mini-batches D̃i
for i in [1, N ] do
Li = βL(D̃p[i], θ̃)
θ̃ = θ̃ − α∇θ̃Li //Inner-loop update

end
Update θ := θ + γ(θ̃ − θ) //Meta update

end
Output: θ

After Taylor expansion on the second item, it becomes

L2(θ − α∇θL1) = L2(θ) +∇θL2 · (−α∇θL1) (5)

and then LMLDG becomes

LMLDG = L1(θ) + βL2(θ)− βα∇θL1∇θL2 (6)

This led to MLDG’s interpretation as a preference for an optimization path with
aligned gradients between meta-train and meta-test [15].
S-MLDG If we use 3 source domains as an example to analyse S-MLDG, the
loss function is

LS-MLDG-3 =L1(θ) + βL2(θ − α∇θL1)

+ βL3(θ − α∇θ(L1 + L2))
(7)

The first two items are the same as LMLDG. Apply Taylor expansion on the third
item in LS-MLDG-3,

L3(θ − α∇θ(L1 + L2)) = L3(θ) +∇θL3 · (−α∇θ(L1 + L2)) (8)

we have,
LS-MLDG-3 = L1(θ) + βL2(θ) + βL3(θ)

− βα∇θL1∇θL2 − βα∇θL3∇θL1 − βα∇θL3∇θL2

(9)

This shows that S-MLDG optimizes all source domains (first three terms), while
preferring an optimization path where gradients align across all pairs of domains
(second three terms maximising dot products). This is different to MLDG, that
only optimizes the inner product of gradients between the current meta-train
and meta-test domain splits. In contrast S-MLDG has the chance to optimize
for DG on each meta-test domain in the sequential way, thus obtaining more
unique experience to ‘practice’ DG.
A Direct S-MLDG Implementation A direct implementation of the meta
update for S-MLDG in the three domain case would differentiate LS-MLDG-3
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(Eq. 9) w.r.t θ as

∇θLS-MLDG-3 = ∇θL1(θ) + β∇θL2(θ − α∇θL1)

+ β∇θL3(θ − α∇θ(L1 + L2))

=
∂L1(θ)

∂θ
+ β

∂L2(θ1)

∂θ1

∂θ1
∂θ

+ β
∂L3(θ2)

∂θ2

∂θ2
∂θ

(10)

where
θ1 = θ − α∇θL1

θ2 = θ − α∇θ(L1 + L2)
(11)

However, update steps based on Eq. 10 require high-order gradients when com-
puting ∂θ1

∂θ ,
∂θ2
∂θ . These higher-order gradients are expensive to compute.

4.2 First-order Approximator of S-MLDG

FO-S-MLDG: Similar to [7], we can alleviate the above issue by stopping
the gradient of the exposed first derivative items to omit higher-order gradients.
I.e, ∇θL1 and ∇θ(L1 +L2) in Eq. 11 are constants when computing L2 and L3.
Then for FO-S-MLDG, Eq. 10 becomes

∇θLS-MLDG-3 =
∂L1(θ)

∂θ
+ β

∂L2(θ1)

∂θ1

∂θ1
∂θ

+ β
∂L3(θ2)

∂θ2

∂θ2
∂θ

=
∂L1(θ)

∂θ
+ β

∂L2(θ1)

∂θ1

∂(θ − α∇θL1)

∂θ

+ β
∂L3(θ2)

∂θ2

∂(θ − α∇θ(L1 + L2))

∂θ

=
∂L1(θ)

∂θ
+ β

∂L2(θ1)

∂θ1
+ β

∂L3(θ2)

∂θ2

(12)

FO-S-MLDG still follows Alg. 1, but saves computation by omitting high-order
gradients in back propagation. We use this approximator for S-MLDG by default.
However FO-S-MLDG still requires back propagation (as per Eq. 10), to compute
gradients of L1, L2 and L3, even though higher-order gradients are ignored.

4.3 Fast First-Order S-MLDG

FFO-S-MLDG: If we look at ∇θLS-MLDG-3 in Eq. 12 again, we find

∂L1(θ)

∂θ
+ β

∂L2(θ1)

∂θ1
+ β

∂L3(θ2)

∂θ2
= L

′
1 + βL

′
2 + βL

′
3 (13)

This means that one-step meta update of FO-S-MLDG is γ(L′1 + βL′2 + βL′3),
where γ is the meta step-size. This indicates that one update of naive first-order
S-MLDG is equivalent to updating the parameters towards the result of training
on L1(Dp[1]), L2(Dp[2]) and L3(Dp[3]) recursively. In other words, if we regard
the initial parameters as θ and the parameters updated recursively on L1(Dp[1]),
L2(Dp[2]) and L3(Dp[3]) as θ̃, then Eq. 13 can be expressed as

L
′
1 + βL

′
2 + βL

′
3 = θ − θ̃ (14)
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Table 1: Performance on IXMAS action recognition. Leave one camera-view out. Ac-
curacy (%).
Unseen MMD-AAE [17] AGG DANN[8] CrossGrad [35] MetaReg [2] Undo-Bias [14] S-Undo-Bias MLDG [15] FFO-S-MLDG S-MLDG

4 79.1 80.0 81.6 78.4 79.3 80.7 82.7 79.4 81.1 80.1
3 94.5 94.5 94.5 94.2 94.5 95.3 94.9 95.2 95.1 95.0
2 95.6 99.8 100.0 100.0 99.8 99.9 100.0 99.9 100.0 99.8
1 93.4 93.4 91.7 94.0 92.5 94.8 94.0 95.2 93.1 96.2
0 96.7 93.5 93.5 91.2 92.8 94.2 93.9 90.4 94.3 92.7

Ave. 91.9 92.2 92.3 91.6 91.8 93.0 93.1 91.9 92.7 92.8

Table 2: Performance on VLCS object recognition. Leave one dataset out. Ac-
curacy (%).
Unseen MMD-AAE[17] AGG DANN [8] CrossGrad [35] MetaReg [2] Undo-Bias[14] S-Undo-Bias MLDG [15] FFO-S-MLDG S-MLDG

V 67.7 65.4 66.4 65.5 65.0 68.1 68.7 67.7 68.1 68.7
L 62.6 60.6 64.0 60.0 60.2 60.3 61.8 61.3 63.1 64.8
C 94.4 93.1 92.6 92.0 92.3 93.7 95.0 94.4 94.8 96.4
S 64.4 65.8 63.6 64.7 64.2 66.0 66.1 65.9 65.2 64.0

Ave. 72.3 71.2 71.7 70.5 70.4 72.0 72.9 72.3 72.8 73.5

This means that we can optimize L1(Dp[1]), L2(Dp[2]) and L3(Dp[3]) in se-
quence (to obtain θ̃, and then use the resulting offset vector as the meta-gradient
for updating θ). Thus we do not need to backpropagate to explicitly compute
the gradients suggested by Eq. 13. The overall flow of FFO-S-MLDG is shown
in Alg. 2.
Link between Fast First-Order S-MLDG and S-MLDG We analyze
FFO-S-MLDG in Alg. 2 considering two source domains and derive the expec-
tation of the optimization gradient is

Ep∼P [gp[1] + gp[2]] = ḡ1 + ḡ2 −
α

2

∂(ḡ1 · ḡ2)

∂θ̃1
+O(α2) (15)

Here ḡ1, ḡ2 are the gradient updates for the first and second source domains and
ḡ1 · ḡ2 is the inner product between the two gradients. The gradient −∂(ḡ1·ḡ2)

∂θ̃1
is in the direction that maximizes it. This means in expectation of multiple
gradient updates FFO-S-MLDG learns to maximize the inner-product between
gradients of different domains. Thus it maintains a similar but slightly different
objective to S-MLDG, which maximizes the inner-product of gradients in each
meta update. More details can be found in Appendix A.

5 Experiments

Datasets and Settings We evaluate our method on three different bench-
marks: IXMAS [42], where human actions are recognized across different cam-
era views. VLCS [6], which requires the domain generalization across different
photo datasets. And PACS [16] which is a more realistic and challenging cross-
domain visual benchmark of images with different style depictions.
Competitors For comparative evaluation we also evaluate the following com-
petitors:
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Table 3: Performance on PACS object recognition across styles (ResNet-18). Accuracy
(%).
Unseen AGG DANN [8] CrossGrad [35] MetaReg [2] Undo-Bias [14] S-Undo-Bias MLDG [15] FFO-S-MLDG S-MLDG

A 77.6 81.3 78.7 79.5 78.4 80.6 79.5 80.0 80.5
C 73.9 73.8 73.3 75.4 72.5 76.2 77.3 77.4 77.8
P 94.4 94.0 94.0 94.3 92.8 94.1 94.3 94.6 94.8
S 70.3 74.3 65.1 72.2 73.3 72.2 71.5 73.8 72.8

Ave. 79.1 80.8 77.8 80.4 79.3 80.8 80.7 81.4 81.5

– AGG: A simple but effective baseline of aggregating all source domains’
data for training [16].

– DANN: Domain adversarial neural networks learns a domain invariant rep-
resentation such that source domains cannot be distinguished [8].

– MMD-AAE: A recent DG method which combines kernel MMD and the
adversarial auto encoder [17].

– CrossGrad: A recently proposed strategy that learns the manifold of train-
ing domains, and uses cross-gradients to generate synthetic data that helps
the classifier generalize across the manifold [35].

– MetaReg: A latest DG method by meta-learning a regularizer constraining
the model parameters to be more domain-generalizable [2].

– Undo-Bias: Undo-Bias models [14] each training domain as a linear combi-
nation of a domain-agnostic model and domain-specific bias, and then uses
the domain-agnostic model for testing. We use the vanilla deep generalization
of Undo-Bias explained in [16].

– MLDG: A recent DG method that is model-agnostic and meta-learns the
domain-generalizable model parameters.

The most related alternatives are Undo Bias [14] and MLDG [15], which
are the models we extend to realize our sequential learning strategy. We re-
implement AGG, DANN, CrossGrad, MetaReg, Undo-Bias and MLDG; and re-
port the numbers stated by MMD-AAE.

5.1 Action Recognition Across Camera Views

Setup The IXMAS dataset contains 11 different human actions recorded by
5 video cameras with different views (referred as 0,...,4). The goal is to train an
action recognition model on a set of source views (domains), and recognize the
action from a novel target view (domain). We follow [17] to keep the first 5 actions
and use the same Dense trajectory features as input. For our implementation,
we follow [17] to use a one-hidden layer MLP with 2000 hidden neurons as
backbone and report the average of 20 runs. In addition, we normalize the hidden
embedding by BatchNorm [12] as this gives a good start point for AGG.
Results From the results in Table 1, we can see that several recent DG meth-
ods [15,35,2,17] fail to improve over the strong AGG baseline. Undo-Bias works
here, and provides 0.8% improvement. Our extension S-Undo-Bias provides a
modest increase of 0.1% on the overall accuracy over vanilla Undo. While the
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original MLDG [15] fails to improve on the AGG baseline, our S-MLDG provides
a 0.9% gain over MLDG and thus improves 0.6% on AGG. Our FFO-S-MLDG
runs on par with S-MLDG, demonstrating the efficacy of our approximator.
Overall our S-Undo-Bias, FFO-S-MLDG and S-MLDG all provide a gain in per-
formance over the AGG baseline.

5.2 Object Recognition Across Photo Datasets

Setup VLCS domains share 5 categories: bird, car, chair, dog and person.
We use pre-extracted DeCAF6 features and follow [23] to randomly split each
domain into train (70%) and test (30%) and do leave-one-out evaluation. We
use a 2 fully connected layer architecture with output size of 1024 and 128 with
ReLU activation, as per [23] and report the average performance of 20 trials.
Results In this benchmark, the results in Table 2 show that the simple AGG
method works well again. Recent DG methods [35,2] still struggle to beat this
baseline. The base DG methods Undo-Bias [14] and MLDG [15] work well here,
producing comparable results to the state-of-the-art [17]. Our extensions of these
base DG methods, S-Undo-Bias, FFO-S-MLDG and S-MLDG all provide im-
provements. Overall our S-MLDG performs best, followed closely by S-Undo-
Bias and FFO-S-MLDG.

5.3 Object Recognition Across Styles

Setup The PACS benchmark [16] contains 4 domains: photo, art painting,
cartoon and sketch and 7 common categories: ‘dog’, ‘elephant’, ‘giraffe’, ‘guitar’,
‘horse’, ‘house’ and ‘person’. [16] showed that this benchmark has much stronger
domain shift than others such as Caltech-Office and VLCS. We use a ResNet-
18 pre-trained ImageNet as a modern backbone for comparison. We note that
MetaReg [2] used a slightly different setup than the official PACS protocol [16],
for which their AGG baseline is hard to reproduce. So we stick to the official
protocol and rerun MetaReg. To save computational cost, since Undo-Bias and
S-Undo-Bias require domain-specific branches that are expensive when applied
to ResNet, we only apply these methods to the last ResNet-18 layer – so previous
layers are shared as per AGG.
Results From the results in Table 3, we can see that: (i) Our sequential learn-
ing methods S-Undo-Bias and S-MLDG improve on their counterparts Undo-
Bias and MLDG, (ii) FFO-S-MLDG performs comparably with S-MLDG, and
(iii) S-MLDG and FFO-S-MLDG perform best overall.

5.4 Further Analysis

Analysis for S-MLDG As shown earlier, MLDG and S-MLDG aim to maxi-
mize the inner-product between gradients of different source domains. Intuitively,
optimizing this gradient alignment will lead to increase domain invariance [8].



Sequential Learning for Domain Generalization 13

Fig. 2: Domain classification loss analysis on VLCS.

To analyze if this is the case, we use domain-classification loss as a measure of
domain invariant feature encoding. We append an additional domain-classifier
to the penultimate layer of the original model, creating a domain and category
multi-task classifier, where all feature layers are shared. We train the domain
classification task for 6000 iterations, then switch to training the category clas-
sification task for another 6000 iterations. Using this setup we compare AGG,
MLDG and S-MLDG. From Fig. 2, we see that the domain-classification loss
decreases rapidly in the first phase: the domain is easy to recognise before DG
training. In the second phase we switch on categorization and DG training. S-
MLDG and MLDG give higher domain classification loss than AGG – indicating
that MLDG and S-MLDG learn features that the domain classifier finds harder
to distinguish, and hence are the most domain invariant.

Visualization of Learned Features We use t-SNE to visualize the feature
embedding of a held-out test domain (V) on VLCS, after training models on
L, C and S. From the results in Fig. 3, we can see that before training the
raw test data points are not separable by category. As baselines we also com-
pare AGG and Naive Ensemble (training an ensemble of domain-specific models
and averaging their result) for comparison to the models of interest: MLDG, S-
MLDG, FFO-S-MLDG, Undo-Bias and S-Undo-Bias. We can see that all these
DG methods exhibit better separability than the two baselines, with S-Undo-
Bias and S-MLDG providing the sharpest separation.

Computational Cost A major contribution of this paper is a DG strategy
that is not only effective but simple (Alg. 2) and fast to train. To evaluate this
we compare the computational cost of of training various methods on PACS with
ResNet-18 for 3k iterations. We run all the methods on a machine with Intel®
Xeon(R) CPU (E5-2687W @ 3.10GHz × 8) and TITAN X (Pascal) GPU. From
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(a) Raw data (b) Naive Ensemble (c) Undo-Bias (d) S-Undo-Bias

(e) AGG (f) MLDG (g) FFO-S-MLDG (h) S-MLDG

Fig. 3: T-SNE visualization of different models’ embeddings of VLCS held-out
test data (V) after training on (LCS). Colors represent object categories.

Table 4: Training cost (mins) for PACS with ResNet-18.

AGG DANN [8] CrossGrad [35] MetaReg [2] MLDG [15]
10.98 11.35 146.51 20.01 49.77

FFO-S-MLDG S-MLDG Undo-Bias [14] S-Undo-Bias
11.04 72.64 11.16 11.01

the results in Table 4, we see that CrossGrad is by far the most expensive with S-
MLDG in second place. In contrast, our derived FFO-S-MLDG is not noticeably
slower than the baseline and lower-bound, AGG. Undo-Bias and S-Undo-Bias
run fast due to only applying them into the last layer. But S-Undo-Bias saves
training cost over Undo-Bias as explained in B.2.

6 Conclusion

We introduced the idea of sequential learning to provide a training regime for
a base DG model. This can be seen as generating more unique DG episodes
for learning, and as providing more feedback for back-propagation through the
chain of domains. Our framework can be applied to different base DG models
including Undo-Bias and MLDG. Our final FFO-S-MLDG method provides a
simple to implement and fast to train DG method that achieves state of the art
results on a variety of benchmarks.
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A Analysis of Fast First-order S-MLDG

If we refer the loss of ith inner-loop step in Alg. 2 as

Li = L(Dp[i], θ̃i) (16)

where θ̃i are the parameters, the gradient of that step is

gi = ∇θ̃iLi = L
′
i (17)

and updated parameters of that step is

θ̃i+1 = θ̃i − αgi (18)

Then Taylor series of gi at initial point θ̃1 gives

gi =L
′
i(θ̃1 + θ̃i − θ̃1)

=L
′
i(θ̃1) + L

′′
i (φ̃1)(θ̃i − θ̃1) +O((θ̃i − θ̃1)2)

=L
′
i(θ̃1) + L

′′
i (θ̃1)(θ̃i − θ̃1) +O(α2)

=L
′
i(θ̃1)− L

′′
i (θ̃1)

i−1∑
j=1

αgj +O(α2)

(19)

where the O(α2) items in gi are omitted due to their small effects in αgi. If we
treat the gradient and hessian of Li w.r.t φ̃1 as ḡi and H̄i, we have

ḡi =
∂Li
∂θ̃1

=
∂Li
∂θ̃i

∂θ̃i

∂θ̃1

= gi
∂(θ̃1 −

∑i−1
j=1 αgj)

∂θ̃1

= gi −O(α)

(20)

Equivalently, we get gi = ḡi +O(α). Then together with H̄i, Eq. 19 becomes

gi = ḡi − H̄i(
i−1∑
j=1

α(ḡj +O(α))) +O(α2)

= ḡi − αH̄i
i−1∑
j=1

ḡj +O(α2)

(21)

If we consider an example with two source domains D1,D2. We run FFO-S-
MLDG with initial parameters θ̃1 on D1,D2 recursively, we get two inner-loop
steps

L1 = L(D1, θ̃1), g1 = ∇θ̃1L1, θ̃2 = θ̃1 − αg1
L2 = L(D2, θ̃2), g2 = ∇θ̃2L2, θ̃3 = θ̃2 − αg2

(22)
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after that we get one-step outer-loop gradient,

θ̃1 − θ̃3 = θ̃1 − θ̃2 + αg2

= θ̃1 − θ̃1 + αg1 + αg2

= α(g1 + g2)

(23)

And when we bring Eq. 21 in, we get

g1 + g2 = ḡ1 + ḡ2 − αH̄2ḡ1 +O(α2) (24)

then, if we shuffle the order of D1, D2 and run on D2, D1 recursively, we get

g2 + g1 = ḡ2 + ḡ1 − αH̄1ḡ2 +O(α2) (25)

Taking the expectation over these two sequences, we get

Ep∼P [gp[1] + gp[2]] = ḡ1 + ḡ2 +
1

2
(−αH̄1ḡ2 − αH̄2ḡ1) +O(α2) (26)

The first term ḡ1 + ḡ2 in Eq. 26 is the gradient that minimizes the losses on D1,
D2. The second term is

1

2
(−αH̄1ḡ2 − αH̄2ḡ1) = −α

2

∂(ḡ1 · ḡ2)

∂θ̃1
(27)

B Application to Undo Bias

B.1 Reinterpreting Vanilla Undo Bias

Background Undo Bias is a classic domain generalization method that was
initially proposed specifically for DG with shallow linear classifiers [14], although
it has been extended to the multi-linear setting for end-to-end deep learning [16].
The hypothesis is that classifiers for all domains (datasets) can be modelled as
the sum of an underlying domain-agnostic model θ0 and a domain-specific bias
θi for each domain i. With this assumption, the objective for training on all N
source domains in D is,

argmin
θ0,θ1,...θN

N∑
i=1

‖Xi(θ0 + θi)− yi‖22 + λ1

N∑
i=1

‖θi‖22 + λ2‖θ0‖22 (28)

where λ1 and λ2 are regularizer weights. After training, the shared parameter
θ0 is assumed to represent a domain-agnostic classifier and used for inference on
unseen domains.
Reinterpretation We can deduce an equivalent formula to Eq. 28 expressed
only in terms of domain-specific models θi

argmin
θ1,...θN

N∑
i=1

‖Xiθi − yi‖22 +
λ1λ2

λ2 + λ1N

N∑
i=1

‖θi‖22

+
λ2
1N

λ2 + λ1N

N∑
i=1

‖θi −
∑N
j=1 θj

N
‖22

(29)
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In this equivalent case, the model parameter to use for unseen domains is
∑N

i=1 θi

N
(i.e., the underlying domain should be close to the mean of the parameters of all
source domains). This alternative formulation will be useful for the hierarchical
extension later. While the presentation so far is for a regression problem with
MSE loss, the general form of Eq. 29 for any loss function L(·) can be written
as,

argmin
θ1,...θN

N∑
i=1

L(Di, θi) + λ‖θi −
∑N
j=1 θj

N
‖22 (30)

Here we omit the second term in Eq. 29, i.e., the squared `2 norm on parameter,
because it is usually realised by weight decay when training a neural network
model. And empirically, we find using ‖.‖2 for the second item in Eq. 30 is easier
to tune.
Derivation for Eq. 29

argmin
θ0,θ1,...θN

N∑
i=1

‖Xi(θ0 + θi)− yi‖22 + λ1

N∑
i=1

‖θi‖22 + λ2‖θ0‖22 (31)

We denote the objective function in Eq. 31 as L(θ, θ0), where we regard the
optimal solution for Eq. 31 is θ∗ and θ∗0 , then we have ∂L

∂θi
|θi=θ∗i ,θ0=θ∗0

= 0,∀i ∈
[1, 2, . . . , N ] and ∂L

∂θ0
|θi=θ∗i ,θ0=θ∗0

= 0.
Given this solution, we have,

Xi
T (Xiθ

∗
i +Xiθ

∗
0 − y(i)) + λ1θ

∗
i = 0 (32)

and
T∑
i=1

Xi
T (Xiθ

∗
i +Xiθ

∗
0 − y(i)) + λ2θ

∗
0 = 0 (33)

When we aggregate all Eq. 32, we get,

N∑
i=1

Xi
T (Xiθ

∗
i +Xiθ

∗
0 − y(i)) + λ1

N∑
i=1

θ∗i = 0 (34)

After the subtraction of the common items in the Eq. 33 and Eq. 34, we get,

θ∗0 =
λ1

λ2

N∑
i=1

θ∗i (35)

If we assume for each specific domain i, the parameterized weights are Θi =
θi + θ0, then we combine this with Eq. 35, and further obtain that,

θ∗0 =
λ1

λ2 + λ1N

N∑
i=1

Θ∗i =
1

λ2

λ1
+N

N∑
i=1

Θ∗i (36)
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Algorithm 3: S-Undo-Bias: Sequential Undo Bias
Input:D = [D1,D2, . . . ,DN ]
Initialize: λ, γ and [θ1, θ2, . . . , θN ]
while not done training do

p = shuffle([1, 2, . . . , N ]) //Randomly sample a trajectory
D̃ = [D̃1, D̃2, . . . , D̃N ] //Sample a mini-batch D̃i for each domain Di
L = L(D̃p[1], θp[1])
for i in [2, 3, . . . , |p|] do

L +=
(
L(D̃p[i], θp[i]) + λ‖θp[i] −

∑i−1
j=1 θp[j]

i−1
‖22
)

end
//One-step S-Undo-Bias update
Update θi := θi − γ∇θiL

end

Output:
∑N

i=1 θ1,θ2,...,θN
N

The obtained Eq. 36 indicates that the shared parameters θ0 is a (slightly
smoothed) average of all the domain-specific parameters Θi. Therefore, we can
get

argmin
Θ1,...ΘN

N∑
i=1

‖XiΘi − yi‖22 +
λ1λ2

λ2 + λ1N

N∑
i=1

‖Θi‖22

+
λ2

1N

λ2 + λ1N

N∑
i=1

‖Θi −
∑N
j=1Θj

N
‖22

(37)

B.2 Sequential Undo Bias

Vanilla Undo Bias aims to learn an underlying domain-agnostic model with one
optimization on a fixed set of source domains (Section B). To instantiate our
proposed framework (Eq. 2) for Undo Bias, we need to extend it to sequential
learning. Intuitively, for a given sequence of training domains, we should learn
an underlying domain from the first two, and then update this when the third
domain comes in, etc. Building on the Undo-Bias formulation in Eq. 30, we define
the objective:

LS-Undo-Bias =Ep∼P L(Dp[1], θp[1])

+

N∑
i=2

(
L(Dp[i], θp[i]) + λ‖θp[i] − θ̄i)‖22

) (38)

where p is a path through all possible permutations of domains P, and i ∈ p
iterates over that path. θ̄i is the running average over the parameters in the

path before it arrives at θp[i], i.e., θ̄i =
∑i−1

j=1 θp[j]
i−1 . The first term is not di-

rectly path-dependent, but it becomes so via shared parameters with the second
path-dependent term. In this objective, when training θi for domain i, back-
propagation also updates all domains in the path before domain i. We term this
procedure Sequential Undo Bias. And its algorithm flow is shown in Alg. 3.
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To unpack Eq. 38, we use a length-3 path example. The objective function
is then:

LS-Undo-Bias-3 = Ep∼P L(Dp[1], θp[1])

+L(Dp[2], θp[2]) + λ‖θp[2] − θp[1]‖22

+L(Dp[3], θp[3]) + λ‖θp[3] −
θp[1] + θp[2]

2
‖22

(39)

This says: train vanilla Undo Bias on the first two domains (first three terms),
and then incrementally train Undo Bias for the third domain (fourth and fifth
term). If the first Undo Bias model θp[1]+θp[2]2 was fixed after training θp[1] and
θp[2] then this would be simple regularization of θp[3] training by the Undo Bias
source (fifth term regularizer). But backpropagating means that θp[1] and θp[2]

are trained so as not only to solve their domains in an Undo Bias way, but
also to help learn θp[3]. This is a DG ‘practice’ for the first trained domains-
specific parameters. Finally, the optimization should be applied for all possible
permutations of [1, 2, 3]. In this example θ1+θ2+θ3

3 would then be used as the
final Undo Bias model for the true testing domain. And as the sequential path
goes deeper, the former ranking domains get more ‘practices’.
Computational Cost The difference between Undo-Bias and S-Undo-Bias
can be found by comparing Eq. 30 and Eq. 38. We can see the computational
difference happens in the second terms in the objective functions. In vanilla
Undo-Bias, each domain-specific parameter would have a L2 loss to minimize its
difference to the mean of all domain-specific parameters. But in S-Undo-Bias,
due to the hierarchical structure, each domain would have the same L2 loss to the
parameters of the traversed domains. If we regard the computational complexity
of the L2 loss of n domain-specific parameters as O(n), the computational com-
plexity for the second item of S-Undo-Bias is

∑n−1
i=2 O(i), which is smaller than

that of Undo-Bias nO(n). So, due to the hierarchical learning, S-Undo-Bias saves
computation over Undo-Bias. This is proved in the training cost comparison in
Table 4.
Validation of Reformulated (S)-Undo-Bias We validate our reformulated
Undo-Bias and S-Undo-Bias on VLCS by comparison to a naive ensemble, which
trains all the domain specific branches separately and uses fused ensemble of
models at inference. The comparison in Fig. 4 shows that both Undo-Bias and
S-Undo-Bias learn better solutions than the simple ensemble of domain-specific
models. This shows that the performance gains of our reformulated Undo-Bias
and S-Undo-Bias are not merely due to the model ensemble.

C Training Hyper Parameters

We can set different α and β (=1 by default) for different inner loops in Alg. 1
and 2 and refer αi and βi as the coefficients in the ith inner loop. We use M-SGD
with momentum=0.9, weight decay=0.00005.
IXMAS
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Fig. 4: Validation of reformulated (S)-Undo-Bias.

– S-MLDG : α1=α2=α3=0.9, γ=0.001 and β4=2.0.
– FFO-S-MLDG : α1=α2=α3=1.0, γ=0.9 and β4=1.1.
– S-Undo-Bias: γ=0.005 and λ=1000.0.

VLCS

– S-MLDG : α1=0.05, α2=0.6, γ=0.001 and β3=1.2.
– FFO-S-MLDG : α1=α2=0.3, γ=0.01 and β3=1.5.
– S-Undo-Bias: γ=0.01 and λ=50.0.

PACS

– S-MLDG : α1=α2=0.002, γ=0.001 and β3=1.85.
– FFO-S-MLDG : α1=α2=0.01, γ=0.9 and β3=1.75.
– S-Undo-Bias: γ=0.001 and λ=100.0.
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