Skip to main content

Dynamic Algorithm for Building Future Networks Based on Intelligent Core Network

  • Conference paper
  • First Online:
  • 700 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12563))

Abstract

6G/IMT-2030 is designed to provide users with innovative speeds of terabit per second, which are proposed to be achieved using a number of advanced technologies, such as Mobile Edge Computing (MEC), Internet of Things (IoT), millimeter wave (mmWave), new radio and software defined networking. It is necessary to solve several important aspects in order to satisfy Quality of Service (QoS), first of all, to ensure network coverage density even in sparsely populated areas. In this paper we proposed software defined network based mobile edge computing dynamic algorithm for improving network performance. In addition, this algorithm can help the service provided to adapt with a required load on the radio links. Furthermore, local content caching and Local Internet Breakout (LIB) can be utilized to reduce the transport network requirements. Finally, the proposed algorithm is analyzed using some use cases and we developed testbed to emulate operator infrastructure.

The publication has been prepared with the support of the “RUDN University Program 5-100” (recipient K. Samouylov). For the research, infrastructure of the 5G Lab RUDN (Russia) was used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Muthanna, A., et al.: Secure and reliable IoT networks using fog computing with software-defined networking and blockchain. J. Sens. Actuator Netw. 8(1), 15 (2019)

    Article  Google Scholar 

  2. Ateya, A.A., Muthanna, A., Vybornova, A., Darya, P., Koucheryavy, A.: Energy - aware offloading algorithm for multi-level cloud based 5G system. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 355–370. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_33

    Chapter  Google Scholar 

  3. Khayyat, M., Alshahrani, A., Alharbi, S., Elgendy, I., Paramonov, A., Koucheryavy, A.: Multilevel service-provisioning-based autonomous vehicle applications. Sustainability 12(6), 2497 (2020)

    Article  Google Scholar 

  4. Jaiswal, R.K., Jaidhar, C.: Location prediction algorithm for a nonlinear vehicular movement in VANET using extended Kalman filter. Wireless Netw. 23(7), 2021–2036 (2017). https://doi.org/10.1007/s11276-016-1265-4

    Article  Google Scholar 

  5. Ateya, A.A., et al.: Model mediation to overcome light limitations-toward a secure tactile internet system. J. Sens. Actuator Netw. 8(1), 6 (2019)

    Article  Google Scholar 

  6. Chang, K.-C., Chu, K.-C., Wang, H.-C., Lin, Y.-C., Pan, J.-S.: Energy saving technology of 5g base station based on internet of things collaborative control. IEEE Access 8, 32935–32946 (2020)

    Article  Google Scholar 

  7. Nørgaard, B., Guerra, A.: Engineering 2030: conceptualization of industry 4.0 and its implications for engineering education. In: 7th International Research Symposium on PBL, p. 34 (2018)

    Google Scholar 

  8. Aijaz, A., Simsek, M., Dohler, M., Fettweis, G.: Shaping 5G for the tactile internet. In: Xiang, W., Zheng, K., Shen, X.S. (eds.) 5G Mobile Communications, pp. 677–691. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-34208-5_25

    Chapter  Google Scholar 

  9. Daraseliya, A.V., Sopin, E.S., Samuylov, A.K., Shorgin, S.Y.: Comparative analysis of the mechanisms for energy efficiency improving in cloud computing systems. In: Galinina, O., Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2018. LNCS, vol. 11118, pp. 268–276. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01168-0_25

    Chapter  Google Scholar 

  10. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A.I., Dai, H.: A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Commun. Surv. Tutor. 20(4), 3098–3130 (2018)

    Article  Google Scholar 

  11. Alvarez, F., et al.: An edge-to-cloud virtualized multimedia service platform for 5G networks. IEEE Trans. Broadcast. 65(2), 369–380 (2019)

    Article  Google Scholar 

  12. Carlin, A., Hammoudeh, M., Aldabbas, O.: Defence for distributed denial of service attacks in cloud computing. Procedia Comput. Sci. 73 (2015). https://doi.org/10.1016/j.procs.2015.12.037

  13. Ericsson mobility report: on the pulse of the networked society. http://www.abc.es/gestordocumental/uploads/internacional/EMR-June-2016-D5201.pdf

  14. Cisco, C.V.N.I.: Global mobile data traffic forecast update, 2016–2021, white paper, pp. 0018–9545 (2017)

    Google Scholar 

  15. Sopin, E.S., Daraseliya, A.V., Correia, L.M.: Performance analysis of the offloading scheme in a fog computing system, pp. 1–5 (2018)

    Google Scholar 

  16. Palola, M., et al.: Live field trial of licensed shared access (LSA) concept using LTE network in 2.3 GHz band. In: 2014 IEEE International Symposium on Dynamic Spectrum Access Networks (DYSPAN), pp. 38–47. IEEE (2014)

    Google Scholar 

  17. Jiang, C., Zhang, H., Ren, Y., Han, Z., Chen, K.-C., Hanzo, L.: Machine learning paradigms for next-generation wireless networks. IEEE Wirel. Commun. 24(2), 98–105 (2016)

    Article  Google Scholar 

  18. Daraseliya, A., Sopin, E., Rykov, V.: On optimization of energy consumption in cloud computing system, October 2018

    Google Scholar 

  19. Kato, N., et al.: The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wirel. Commun. 24(3), 146–153 (2016)

    Article  Google Scholar 

  20. Le, L.-V., Lin, B.-S., Do, S.: Applying big data, machine learning, and SDN/NFV for 5G early-stage traffic classification and network QoS control. Trans. Netw. Commun. 6(2), 36 (2018)

    Google Scholar 

  21. Le, L.-V., Sinh, D., Tung, L.-P., Lin, B.-S.P.: A practical model for traffic forecasting based on big data, machine-learning, and network KPIs. In: 2018 15th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4. IEEE (2018)

    Google Scholar 

  22. Kumar, P.M., Manogaran, G., Sundarasekar, R., Chilamkurti, N., Varatharajan, R., et al.: Ant colony optimization algorithm with internet of vehicles for intelligent traffic control system. Comput. Netw. 144, 154–162 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdukodir Khakimov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khakimov, A., Muthanna, A., Elgendy, I.A., Samouylov, K. (2020). Dynamic Algorithm for Building Future Networks Based on Intelligent Core Network. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds) Distributed Computer and Communication Networks. DCCN 2020. Lecture Notes in Computer Science(), vol 12563. Springer, Cham. https://doi.org/10.1007/978-3-030-66471-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66471-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66470-1

  • Online ISBN: 978-3-030-66471-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics