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Abstract. In this report we are aiming at introducing a global measure of non-classicality of

the state space of N -level quantum systems and estimating it in the limit of large N . For this

purpose we employ the Wigner function negativity as a non-classicality criteria. Thus, the

specific volume of the support of negative values of Wigner function is treated as a measure

of non-classicality of an individual state. Assuming that the states of an N -level quantum

system are distributed by Hilbert-Schmidt measure (Hilbert-Schmidt ensemble), we define

the global measure as the average non-classicality of the individual states over the Hilbert-

Schmidt ensemble. We present the numerical estimate of this quantity as a result of random

generation of states, and prove a proposition claiming its exact value in the limit of N → ∞.

Keywords: Wigner function · phase space formalism · non-classicality · Hilbert-Schmidt

measure .

1 Introduction

With the rise of quantum information and computation paradigms alongside the adjacent fields, one

time and again encounters the characterization ”non-classical” when describing the quantum states

involved. It must be pointed out that the notion of non-classicality of quantum states is not well
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defined. Under this label, we usually understand the effects predicted by quantum mechanics which

are incomprehensible from the standpoint of classical intuition. These include everything spanning

from quantum entanglement and other purely quantum correlations to sub-poissonian statistics and

squeezing of electromagnetic fields. Quite often these become resources for new powerful techniques,

as is the case, for example, with quantum entanglement. A question of quantitative description of

the degree of non-classicality and hence of the resource itself arises here. Obviously, due to the

wideness and vagueness of the question, it would be naive to assume the existence of a universal

measure encompassing the intensities of all the quantum effects. However, it seems that the central

object of quantum mechanics on the phase space, the Wigner function, somehow encodes the crucial

information about the non-classical features of the state through the property of having negative

values. Indeed, to name just a few examples: it has been shown that quantum circuits where the

initial state together with the quantum operations is representable with positive Wigner functions

can be classically efficiently simulated [2]; s-waves are entangled if and only if corresponding Wigner

function has negative domains [1]; the negativity volume of the Wigner function is an entanglement

indicator for hybrid qubit-bosonic states if certain conditions are met [3], etc.

Elaborating on the property of Wigner function to have negative values, several measures of

non-classicality have been introduced (see [4] and references therein). Here, we generalize these

well-established ideas from the level of individual states to the whole state space.

The article is organized as follows. In the next section we introduce the necessary basics about

the Wigner function. In section 3 we define the main quantities which will be used in the rest

of paper. Section 4.1 contains results on the global measure of non-classicality of density matrices

from the Hilbert-Schmidt ensemble. Finally, in section 4.2 the analysis of behavior of the introduced

measure of non-classicality for large N is given.

2 The Wigner function of a density operator of N -level system

Wigner function [5] was introduced in an attempt of phase space description of quantum mechanics.

For quantum states represented by a density operator ρ̂ ∈ D(L2(Rn)) acting on the Hilbert space

H = L2(Rn) the Wigner function of ρ̂ is defined over a phase space (R2n , w) with the standard
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symplectic 2-form w :=
∑n
j dpj ∧ dqj and is given by the so-called Wigner transform:

Wρ̂(q,p) =

(
1

2π~

)n ∫
Rn

dη
〈
q − η

2

∣∣∣ ρ̂ ∣∣∣q +
η

2

〉
e

i

~
pη
. (1)

According to the Weyl-Wigner formalism one can establish an invertible map between the self-

adjoint semipositive definite operator ρ̂ and its Weyl symbol (2π~)nWρ̂(q,p) in (1)

%̂ � Wρ(q,p) . (2)

Generalizing the Weyl-Wigner mapping (2) to the case of an arbitrary self-adjoint operator,

Â�WA(q,p) , (3)

the quantum mechanical prediction of the operator, i.e., E[Â] = tr[ρ̂Â] is expressible in the form

of conventional ensemble average in classical mechanics defined as the mean of an operator symbol

A(q,p) over the phase-space with the distribution W% :

E[Â] = A A :=

∫
R2n

dp dqWA(q,p)Wρ(p, q) . (4)

However, the similarity between the quantum and classical expressions is somewhat illusive. Though,

the marginal distributions of momenta on one side and of coordinates on the other are true prob-

ability density functions, due to the limitation of simultaneous measurements of coordinates and

momenta in quantum mechanics by Heisenberg uncertainty principle, Wigner function is not free

from ”faults”. Namely, it may be shown that there are states for which Wigner function has negative

values. Hence it can’t be considered as a true probability density function, and is usually called a

quasiprobability density function.

As it was mentioned above the Wigner transform is well adapted to the case of a quantum

mechanical system associated to the Hilbert space H = L2(Rn) . The natural question arises how to

deal with other quantum systems whose Hilbert space H is different from L2(Rn) ? In 1957, based

on the Weyl-Wigner approach, R.L.Stratonovich formulated [6] general principles of constructing

the mapping (3), which should be satisfied for any quantum system associated to some Hilbert

space. These principles, later on, received the name of Stratonovich-Weyl (SW) correspondence.

Since in the present note we are interested in quantification of “quantumness” in systems whose

Hilbert space is H = CN , below basics of SW correspondence are reproduced in a form adapted to

the case of finite-dimensional quantum systems.
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The basic idea of realisation of mapping (3) is to use the kernel operator ∆(ΩN ) defined over the

symplectic manifold ΩN endowed with some symplectic 2-form. The mapping is given by formulae

WA(ΩN ) = tr (A∆(ΩN )) , (5)

Â =

∫
ΩN

dΩN ∆(ΩN )WA(ΩN ) ; (6)

Here the kernel ∆(ΩN ) is self-dual, in sense that the same kernel defines as direct as well an inverse

mapping (5), and it is the so-called Staratonovich-Weyl kernel. According to the Stratonovich-Weyl

principles in order to have a correct phase-space formulation of quantum theory SW kernel should

provide fulfilment of the following compulsory requirements:

– the kernel must be Hermitian, ∆(ΩN )† = ∆(ΩN ) guaranteeing the reality of symbols;

– the kernel must be the trace class operator, i.e.,
∫
ΩN

dΩN ∆(ΩN ) = 1, ensuring completeness

of quantum states as well as classical ones;

– the unitary symmetry of states ρ′ = g ρg† , g ∈ SU(N) induces the adjoint transformation of

SW kernel, ∆(Ω′N ) = g†∆(ΩN )g where Ω′N is an image of point ΩN under the action of g .

It has been shown [7] that for N -level quantum system the Stratonovich-Weyl correspondence

clauses admit simple formulation in the form of algebraic equations on spectrum of SW kernel:

tr[∆(ΩN )] = 1 and tr[∆(ΩN )2] = N . (7)

These equations leave N − 2 parametric freedom of choice of the spectrum of SW kernel. Taking

into account this ambiguity we can write the SVD decomposition of SW kernel

∆(ΩN |ν) = U(ΩN )P (ν)U†(ΩN ) , (8)

where P (ν) is a diagonal matrix whose elements are specifically ordered eigenvalues of the SW

kernel, spec(∆) = {π1(ν), π2(ν), . . . , πN (ν)} . Eigenvalues π(ν) are functions of a real (N − 2)-

tuple ν = (ν1, · · · , νN−2) parameterising the moduli space of solutions to (7). Hereafter, dealing

with the Wigner function of density matrix ρ we will point at this ambiguity by explicitly writing

dependence of SW kernel on the moduli space parameters ν:

W (ν)
ρ (ΩN ) = tr[ρ∆(ΩN |ν)] . (9)

See more on the moduli space of parameters in [8].
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Finally, a few remarks on symplectic space ΩN are in order. From the SVD decomposition (8) it

follows that its structure, particularly its dimension depends on the choice of kernel. Now, assuming

that its isotropy group H ∈ U(N) is of the form

Hk = U(k1)× U(k2)× U(ks+1) ,

then the corresponding phase-space ΩN can be identified with a complex flag variety FNd1,d2,...,ds =

U(N)/H , where (d1, d2, . . . , ds) are positive integers with sum N , such that k1 = d1 and ki+1 =

di+1 − di with ds+1 = N . Therefore, each SW kernel is in one-to one correspondence with a point

of moduli space (with ν- being the corresponding coordinate) and it is defined over the phase ΩN,k,

member of the finite family of flag varieties labeled by an integer (s+ 1)-tuple k = (k1, . . . , ks+1) .

The volume form on ΩN,k is determined by the bi-invariant normalised Haar measure dµSU(N) on

SU(N) group [7]:

dΩN,k = N Vol(Hk)
dµSU(N)

dµHk

, (10)

where dµHk
is the bi-invariant measure over the isotropy group Hk.

3 Measures of non-classicality of state and overall quantum system

Before introducing the main quantity we are interested in, it is worth to remind a few auxiliary

notions. We begin with the definition of the state space PN of an N -level quantum system.

Definition 1. The state space PN is a N2 − 1 dimensional subset in the space of N ×N complex

matrices MN (C) given by following conditions:

PN = {X ∈MN (C) | X = X† , X ≥ 0 , tr (X) = 1} . (11)

Let, ∆(ΩN |ν) be the Stratonovich-Weyl (SW) kernel with moduli parameter ν . Due to possible

symmetries of state ρ and SW kernel the corresponding WF function has domain of definition not

over the whole ΩN , but is restricted to its certain subset. Having in mind this fact we introduce

two additional definitions.

Definition 2. ΩN [ρ |ν] ∈ ΩN represents a support of WF associated to a given state ρ ∈ PN and

SW kernel.
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Definition 3. We call Ω
(−)
N [ρ |ν] the negative support of the Wigner function associated to a given

SW kernel and state ρ ∈ PN ,

Ω
(−)
N [ρ |ν] =

{
ω ∈ ΩN [ρ |ν] | W ν

ρ (ω) < 0
}
. (12)

Associating non classicality with the discrepancy between positivity requirement on classical prob-

ability distribution and a property of the Wigner function to attain negative values, we introduce a

measure quantifying quantumness of state via a relative volume of the subset of phase space where

this discrepancy occurs. The next definitions give formalization of this idea.

Definition 4. For a state ρ of an N -dimensional quantum system we define its non-classicality

measure (or quantumness) QN [ρ ,ν] as

QN [ρ ,ν] =
Vol(Ω

(−)
N [ρ |ν])

Vol (ΩN [ρ |ν])
. (13)

It is necessary to note that in definition (13) it is assumed that the volume is evaluated using the

symplectic volume form which is a projection of the corresponding volume form on the phase space

ΩN to the subset ΩN [ρ |ν].

Definition 5. We call the following unions,

ΩN [ν] =
⋃

ρ∈PN

ΩN [ρ |ν] , and Ω
(−)
N [ν] =

⋃
ρ∈PN

Ω
(−)
N [ρ |ν] (14)

as the “symplectic superspace” and the collection of supports of negativity of the Wigner function

will be called correspondingly as “negativity supersupport”.

This definitions are in given in a sense of the famous Wheeler’s superspace notion in General

Relativity (see [9]). Basically ΩN [ν] is the collection of the supports of the WF of all possible

states of N -level quantum system with fixed SW kernel. Following the same logic as before one can

introduce the measure of quantumness on the “symplectic superspace” as well.

Definition 6. For a given SW kernel, the global non-classicality measure QN [ν] of N -level quantum

system is

QN [ν] =
Volg(Ω

(−)
N [ν])

Volg (ΩN [ν])
. (15)
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In the definition (15) under the volume of the “symplectic superspace” we assume a result of an

average of the symplectic volume of Vol(ΩN [ρ,ν]) over all possible states distributed in accordance

with the measure dmg[ρ] , associated to a certain Riemannian metric g on PN :

Volg (ΩN [ν]) =

∫
PN

dmg[ρ] Vol(ΩN [ρ,ν]) (16)

Below we introduce notions allowing us to relate the definition of the global indicator of system

quantumness QN [ν] given in terms of the “symplectic superspace” with the corresponding notion

formulated in terms of the state space PN .

Definition 7. For an arbitrary point ω ∈ ΩN [ρ |ν], the subspace P
(−)
N [ν |ω] ⊂ PN of state space

is defined as

P
(−)
N [ν |ω] =

{
ρ ∈ PN |ω ∈ ΩN [ρ | ν] , W ν

ρ (ω) < 0
}
. (17)

Proposition 1. The volume of P
(−)
N [ν |ω] evaluated with respect to the unitary invariant measure

on PN is independent of ω ,
d

dω
Volg

(
P

(−)
N [ν |ω]

)
= 0 . (18)

Proof. Indeed, let us write down the volume integral (18) over negativity domain via the Heaviside

step function θ[−W ν
ρ (ω)] and use SVD decomposition (8) for SW kernel ∆(ω|ν) of the Wigner

function

Volg

(
P

(−)
N [ν |ω]

)
=

∫
PN

dmg[ρ] θ
[
−tr(U(ω)P νU(ω)†ρ)

]
=

∫
PN

dmg[ρ′] θ [−tr(P νρ′)] , (19)

In the last line of (19) we perform transformation ρ′ = U(ω)†ρU(ω). Noting that the state space PN

is SU(N) invariant space endowed with the invariant measure we get convinced that Vol
(
P

(−)
N [ν |ω]

)
is the same for all ω ∈ ΩN [ρ |ν] .

Based on this observation, afterwards we choose ω corresponding to the diagonal SW kernels,

i.e., ω = 0 and simplify notation of the negativity subset, P
(−)
N [ν].

Now we are in position to formulate the Proposition which interrelates two ways of interpretation

of the global measure of quantumness.

Proposition 2. The global non-classicality measure QN [ν] can be expressed as the relative volume

of the subset P
(−)
N [ν] with respect to total volume of state space PN :

QN [ν] =
Volg(P

(−)
N [ν])

Volg(PN [ν])
. (20)
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where the volume of state space is evaluated with respect to the metric g generating the measure

dmg[ρ] in definition (15).

Proof. At first let us note that contribution to (20) from components of “symplectic superspace”

associated to non-generic states (degenerate and non-maximal rank density matrices) is zero owing

to zero integration measure of this states.

Hence, the integration effectively projects only to the components of “symplectic superspace”

corresponding to the stratum of the generic states, whose isotropy group is conjugated to subgroup

H = U(1)N . Therefore the structure of ΩN [ρ,ν] is solely determined by the SW kernel and does

not depend on the ρ, which means that,

Volg(ΩN [ν]) = Volg(PN )Vol

(
U(N)

U(1)N

)
, (21)

The same argumentation lead the relation

Volg(Ω
(−)
N [ν] = Volg(P

(−)
N [ν])Vol

(
U(N)

U(1)N

)
, (22)

thus proving the Proposition.

4 Global measure of quantumness as geometric probability

In this section we outline an interpretation of the above introduced measure of nonclassicality

QN [ν] as a certain geometric probability. Indeed, according to the representation (20) the global

non-classicality measure QN [ν] can be expressed as the relative volume of the subset P
(−)
N [ν] ∈ PN ,

consisting out of states ρ whose Wigner functions Wρ(ω |ν) evaluated at some fixed point of phase

space, say ω = 0 are negative. Therefore, in consent to the Theory of Geometric Probability, this

relative volume can be identified with the probability of finding of states with the negative WF

among a certain random ensemble of states:

P(−) :=
Number of states with negative WF

Total number of generated states
(23)

Note, that this identification of QN [ν] and P(−) is correct if random states are distributed in

ensemble according to the measure dmg[ρ] in definition (15).

Following this identification of QN [ν] and probability P(−), we will generate random ensemble

of the Hilbert-Schmidt states of N -level quantum system and then construct the corresponding

Wigner functions with different kernels and test them on negativity.
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4.1 Quantumness of Hilbert-Schmidt states for different SW kernels

There is an elegant method of generation of random density matrices from the Hilbert-Schmidt

ensemble . Its starting point is is the generation of the so-called Ginibre ensemble, i.e., the set of

complex matrices whose elements have real and imaginary parts distributed as independent normal

random variables. Considering a square N×N complex random matrix z from the Ginibre ensemble,

one can construct the density matrix from the Hilbert-Schmidt ensemble as

ρ
HS

=
z†z

tr(z†z)
, (24)

We have generated such set of density matrices we evaluate QN (ν) according to (23), for the next

families of SW kernels:

– Kernels whose isotropy group is H = SU(N − 1), i.e., (N − 1)- fold degenerate eigenvalues

1+
√
1+N
N and one smallest eigenvalue, 1+(1−N)

√
1+N

N ;

– Kernels whose isotropy is H = SU(N − 2) × SU(2), i.e., (N − 2)- fold degenerate eigenvalues
2−N−

√
2
√

(N−2)(N−1)(1+N)

(N−2)N and double degenerate eigenvalues
2−
√
2
√

(N−2)(N−1)(1+N)

2N ;

– Kernels whose isotropy group is H = SU(N − 3) × SU(3), , i.e., (N − 3)- fold degenerate

eigenvalues 3−N−
√
3
√
3−N−3N2+N3

(N−3)N and triple of degenerate eigenvalues, 3−
√
3
√
3−N−3N2+N3

3N ;

– Random kernels, which almost always are generic.

In Fig. 1 we have plotted QN (ν) depending on N , for different SW kernels. Approximately ∼ 108

matrices have been generated and tested on the Wigner function negativity for each N . This plot

shows that with growing number of levels the quantumness of system becomes independent of SW

kernel and tends to a certain value. In the next section we will give argumentation of this universality

of QN (ν) for the Hilbert-Schmidt ensemble.

4.2 The large N limit of global non-classicality

Proposition 3. In the limit N → ∞ the global non-classicality measure QN [ν] of the Hilbert-

Schmidt ensemble does not depend on the choice of SW kernel. Furthermore, for the infinite level

system the quantumness measure is

lim
N→∞

QN (ν) = erfc

(
1√
2

)
(25)
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Fig. 1. Dependence of QN [ν] on number of levels N for different types SW kernels described in the text.

For systems with number of levels greater than N = 28 the outputs of all but one plots are suppressed,

since the difference of values of QN [ν] for different kernels are within the statistical error.

Proof. Suppose that SW kernel ∆ = UP (ν)U† is given by P (ν) = diag||π1, π2, · · · , πN ||, where

the eigenvalues are presented in a decreasing order and that only m of them are non negative. We

assume the following notations

Z1 =

m∑
i=1

πi, Z2 =

N∑
i=m+1

|πi|, M1 =

m∑
i=1

π2
i , M2 =

N∑
i=m+1

π2
i . (26)

In this notations the equations SW kernel obeys may be rewritten as

Z1 − Z2 = 1 (27)

M1 +M2 = N. (28)

Remembering that the matrices generated by the procedure ρ = zz†

tr(zz†)
, with normally distributed

real and imaginary parts of %, uniformly cover the set of density matrices with respect to Hilbert-

Schmidt measure, we observe that Prob[tr[Pρ] < 0] is equal to the probability of event

N∑
i=1

Pi i ρi i < 0 , (29)

or alternatively, due to the positivity of tr(zz†) to the probability of

N∑
i=1

Pi i (zz†)i i < 0 . (30)
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Equivalently rewriting this event we get

m∑
i=1

πi (zz†)i i <

N∑
i=m+1

|πi| (zz†)i i . (31)

Further we denote ξ
(i)
j = zi,jz

∗
i,j , so that (zz†)i i =

∑N
j=1 ξ

(i)
j , and β

(i)
j = |πi| ξ(i)j . In this terms 31

may be rewritten
m∑
i=1

N∑
j=1

β
(j)
i <

N∑
i=m+1

N∑
j=1

β
(j)
i . (32)

Since Re(zi,j) and Im(zi,j) are distributed by normal distribution with zero mean and unit variance,

then ξ’s are distributed with χ2
2, distribution while β

(i)
j ’s are distributed with mean E(β

(i)
j ) = 2 |πi|

and variance var(β
(i)
j ) = 4π2

i . Now according to central limit theorem

x =

∑m
i=1

∑N
j=1 β

(i)
j −

∑m
i=1

∑N
j=1 E

(
β
(i)
j

)
(∑m

i=1

∑N
j=1 var

(
β
(i)
j

)) 1
2

= (33)

∑m
i=1

∑N
j=1 β

(i)
j − 2NZ1√

4NM1

(34)

as well as

y =

∑N
i=m+1

∑N
j=1 β

(i)
j −

∑N
i=m+1

∑N
j=1 E

(
β
(i)
j

)
(∑N

i=m+1

∑N
j=1 var

(
β
(i)
j

)) 1
2

= (35)

∑m
i=m+1

∑N
j=1 β

(i)
j − 2NZ2√

4NM2

, (36)

are distributed normally with zero mean and unit variance. Transforming eq. 32 by subtracting

from both sides 2N(Z1 + Z2) and dividing by
√

4NM1M2 we get

x√
M2

− NZ2√
NM1M2

<
y√
M1

− NZ1√
NM1M2

, (37)

or taking into account the equations for the Statonovich-Weyl kernel we get

x < y

√
N −M1

M1
−
√

N

M1
. (38)

Now, let us denote t =
√

N−M1

M1
so that the initial probability is equal to the probability of

x < y t−
√
t2 + 1. (39)
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Since x and y are distributed normally the probability of the event described by equation (39) will

be

P(t) =
1

2π

∫ ∞
−∞

dy

∫ yt−
√
t2+1

−∞
dx e−

y2

2 e−
x2

2 . (40)

It may be checked that

dP(t)

dt
=

1

2π

∫ ∞
−∞

dy
e−

y2

2 −
1
2 (
√
1+t2−ty)

2 (
−t+

√
1 + t2y

)
√
t2 + 1

= 0 (41)

Hence, P(t) = P(0) = 1
2 erfc

(
1√
2

)
= 0.158655, where erfc is the complimentary error function.

Which proves the preposition.

5 Conclusions

Summarizing, in this work we have introduced a global measure of non-classicality of the state space

of N -level quantum systems. By computer simulations the measure was computed for several SW

kernel families depending on the number of levels. It was proven that for large N the measure of

non-classicality does not depend on the choice of the SW kernel, thus it is an invariant over the

moduli space of SW kernels.

However, it must be noted, that it is unreasonable to suppose that a single measure might

capture all the non-classical aspects of quantum states, let alone of the whole state space. Hence,

there must be different ways of defining non-classicality measures underlining this or that features

of quantum behaviour (see for comparison [10]).
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