Skip to main content

Simulation of Human Upright Standing Push-Recovery Based on OpenSim

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Abstract

Investigating the human standing balance mechanisms under push-recovery task is of great importance to the study of biped robot balance control. Under human push-recovery mission, the passive stiffness, stretch reflex and short-range stiffness control mechanisms of human ankle joint are the main components in the internal mechanism of human body. To this end, this paper dedicates to evaluating the roles of the three aforementioned mechanisms during human upright standing push-recovery mission. Firstly, based on the simulation platform OpenSim4.0, this paper chooses a simplified lower-limb musculoskeletal model as the research object. Subsequently, this paper completes the design of the passive stiffness, stretch reflex and passive stiffness controller, and completes the static standing test and upright push-recovery simulation of the selected musculoskeletal model. Finally, in order to verify the effectiveness of the simulation, this paper uses electromyography, force plate and dynamic capture system to collect the relevant data of the human upright push-recovery. The experimental and simulation results reveal that the selected musculoskeletal model can basically simulate the process of human upright push-recovery under the joint actions of the three mechanisms noted above, which, to some degree, can reflect the effectiveness of the established method. Thus, the established method may provide some insights on the balance control of the bipedal robot.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Basic Biomechanics of the Musculoskeletal System. Wolters Kluwer/Lippincott Williams & Wilkins Health (2012)

    Google Scholar 

  2. Lee, H., Rouse, E.J., Krebs, H.I.: Summary of human ankle mechanical impedance during walking. IEEE J. Transl. Eng. Health Med. 4, 1–7 (2016)

    Google Scholar 

  3. Yin, K., et al.: Artificial human balance control by calf muscle activation modelling. IEEE Access PP(99), 1 (2020)

    Google Scholar 

  4. Warnica, M.J., Weaver, T.B., Prentice, S.D., et al.: The influence of ankle muscle activation on postural sway during quiet stance. Gait and Posture 39(4), 1115–1121 (2014)

    Google Scholar 

  5. Misgeld, B.J.E., Zhang, T., Lüken, M.J., et al.: Model-based estimation of ankle joint stiffness. Sensors 17(4), 713 (2017)

    Google Scholar 

  6. Guarin, D.L., Jalaleddini, K., Kearney, R.E.: Identification of a parametric, discrete-time model of ankle stiffness. In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2013), pp. 5065–5070. IEEE (2013)

    Google Scholar 

  7. Weiss, P.L., Kearney, R.E., Hunter, I.W.: Position dependence of ankle joint dynamics—I. Passive mechanics. J. Biomech. 19(9), 727–735 (1986)

    Google Scholar 

  8. De Groote, F., Allen, J.L., Ting, L.H.: Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: a simulation study. J. Biomech. 55, 71–77 (2017)

    Google Scholar 

  9. Delp, S.L., Anderson, F.C., Arnold, A.S., et al.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Google Scholar 

  10. Pang Muye, X., Xiangui, T.B., Kui, X., Zhaojie, J.: Evaluation of calf muscle reflex control in the ‘Ankle Strategy’ during upright standing push-recovery. Appl. Sci. 9(10), 2085 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 61603284 and 61903286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, T., Tang, B., Pang, M., Xiang, K. (2020). Simulation of Human Upright Standing Push-Recovery Based on OpenSim. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics