Skip to main content

Control of a Series Elastic Actuator Based on Sigmoid-Proportional-Retarded (SPR) with Online Gravity Compensation

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

  • 1431 Accesses

Abstract

In this paper, a rotary series elastic actuator (SEA) based on torsion spring is designed. A novel position control law (Sigmoid-proportional-retarded) with online gravity compensation (OGC) is presented in order to reduce the residual vibration of the link and shorten the response time. Moreover, the stability of SPR control law is proved by the Lyapunov method. Some comparative experiments were implemented. It is concluded that SPR control based on OGC can reach the target position accurately and quickly. Meanwhile, the results show that the method is also effective in eliminating residual vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tadele, T.S., de Vries, T., Stramigioli, S.: The safety of domestic robotics: a survey of various safety-related publications. IEEE Robot. Autom. Mag. 21(3), 134–142 (2014)

    Google Scholar 

  2. Good, M., Sweet, L., Strobel, K.: Dynamic models for control system design of integrated robot and drive systems. J. Dynam. Syst. Measure. Control 107(1), 53–59 (1985)

    Google Scholar 

  3. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proceedings of International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots. IEEE/RSJ. pp. 399–406 (1995)

    Google Scholar 

  4. Roy, N., Newman, P., Srinivasa, S.: CompActTM Arm: A compliant manipulator with intrinsic variable physical damping, p. 504. MIT Press, Massachusetts (2013)

    Google Scholar 

  5. Kashiri, N., Laffranchi, M., Tsagarakis, N.G., et al.: Physical interaction detection and control of compliant manipulators equipped with friction clutches. In: Proceedings of International Conference on Robotics and Automation. IEEE, pp. 1066–1071 (2014)

    Google Scholar 

  6. Garofalo, G., Englsberger, J., Ott, C.: On the regulation of the energy of elastic joint robots: Excitation and damping of oscillations. In: Proceedings of American Control Conference. IEEE, pp. 4825–4831 (2015)

    Google Scholar 

  7. Sariyildiz, E., Chen, G., Yu, H.: A unified robust motion controller design for series elastic actuators. IEEE/ASME Trans. Mechatronics 22(5), 2229–2240 (2017)

    Google Scholar 

  8. Kostarigka, A.K., Doulgeri, Z., Rovithakis, G.A.: Prescribed performance tracking for flexible joint robots with unknown dynamics and variable elasticity. Automatica, 49(5),.1137–1147 (2013)

    Google Scholar 

  9. Fantoni, I., Lozano, R.: Non-linear control for underactuated mechanical system. Springer Science & Business Media, Dordrecht (2002)

    Google Scholar 

  10. Petit, F., Lakatos, D., Friedl, W., et al.: Dynamic trajectory generation for serial elastic actuated robots. Int. Federation Autom. Control 45(22), 636–643 (2012)

    Google Scholar 

  11. Spong, M.W.: Modeling and control of elastic joint robots. J. Dynam. Syst. Measure. Control 109(4), 310–319 (1987)

    MATH  Google Scholar 

  12. Spong, M.W., Khorasani, K., Kokotovic, P.: An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. 3(4), 291–300 (1987)

    Google Scholar 

  13. Spong, M.W., Hung, J.Y., Bortoff, S.A., et al.: A comparison of feedback linearization and singular perturbation techniques for the control of flexible joint robots. In: Proceedings of American Control Conference. IEEE, pp. 25–30 (1989)

    Google Scholar 

  14. Ghorbel F, Spong, M.W.: Stability analysis of adaptively controlled flexible joint manipulators. In: Proceedings of Conference on Decision and Control. IEEE, pp. 2538–2544 (1990)

    Google Scholar 

  15. Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36(10), 1208–1213 (1991)

    MathSciNet  Google Scholar 

  16. De Luca, A., Siciliano, B., Zollo, L.: PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments. Automatica 41(10), 1809–1819 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Xixian, Mo., Feng, J.: Control of a mechanically compliant joint with proportional-integral-retarded (PIR) Controller. In: ICIRA, pp. 379–390 (2018)

    Google Scholar 

  18. Readman, M.C., Belanger, P.R.: Analysis and control of a flexible joint robot. In: IEEE Conference on Decision & Control. IEEE (1990)

    Google Scholar 

  19. Luca, A.D., Flacco, F.: A PD-type regulator with exact gravity cancellation for robots with flexible joints. In: IEEE International Conference on Robotics & Automation. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, F., Zhang, J., Zhang, B. (2020). Control of a Series Elastic Actuator Based on Sigmoid-Proportional-Retarded (SPR) with Online Gravity Compensation. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics