Skip to main content

Task-Oriented Collision Avoidance in Fixed-Base Multi-manipulator Systems

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12595))

Included in the following conference series:

  • 1448 Accesses

Abstract

Collision avoidance implies that extra motion in joint space must be taken, which might exert unexpected influences on the execution of the desired end-effector tasks. In this paper, a novel framework for generating collision-free trajectories while respecting task priorities is proposed. Firstly, a data-driven approach is applied to learn an efficient representation of the distance decision function of the system. The function is then working as the collision avoidance constraints in the inverse kinematics (IK) solver, which avoids the collision between manipulators. To eliminate undesired influences of the extra motion for collision avoidance on the execution of tasks, task constraints are proposed to control the task priorities, offering the system with the ability to trade off between collision avoidance and task execution. Furthermore, the overall framework is formulated as a QP (quadratic programming), therein guarantees a real time performance. Numerical simulations are conducted to demonstrate the effectiveness and efficiency of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)

    Google Scholar 

  2. Dogar, M., Knepper, R.A., Spielberg, A., Choi, C., Christensen, H.I., Rus, D.: Multi-scale assembly with robot teams. Int. J. Robot. Res. 34(13), 1645–1659 (2015)

    Article  Google Scholar 

  3. Figueroa Fernandez, N.B., Mirrazavi Salehian, S.S., Billard, A.: Multi-arm self-collision avoidance: A sparse solution for a big data problem. In: In Proceedings of the Third Machine Learning in Planning and Control of Robot Motion (MLPC) Workshop., CONF (2018)

    Google Scholar 

  4. Ge, S.S., Cui, Y.J.: New potential functions for mobile robot path planning. IEEE Trans. Robot. Autom. 16(5), 615–620 (2000)

    Article  Google Scholar 

  5. Hsu, D., Kavraki, L.E., Latombe, J.C., Motwani, R., Sorkin, S., et al.: On finding narrow passages with probabilistic roadmap planners. In: Robotics: the Algorithmic Perspective: 1998 Workshop on the Algorithmic Foundations of Robotics, pp. 141–154 (1998)

    Google Scholar 

  6. Joachims, T.: Training linear svms in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)

    Google Scholar 

  7. Joachims, T., Yu, C.N.J.: Sparse kernel SVMs via cutting-plane training. Mach. Learn. 76(2–3), 179–193 (2009)

    Article  Google Scholar 

  8. Keating, S.J., Leland, J.C., Cai, L., Oxman, N.: Toward site-specific and self-sufficient robotic fabrication on architectural scales. Sci. Robot. 2(5), eaam8986 (2017)

    Google Scholar 

  9. Knepper, R.A., Layton, T., Romanishin, J., Rus, D.: Ikeabot: an autonomous multi-robot coordinated furniture assembly system. In: 2013 IEEE International Conference on Robotics and Automation, pp. 855–862. IEEE (2013)

    Google Scholar 

  10. Kröse, B.J., Van Dam, J.W.: Learning to avoid collisions: a reinforcement learning paradigm for mobile robot navigation. In: Artificial Intelligence in Real-Time Control 1992, pp. 317–321. Elsevier, Amsterdam (1993)

    Google Scholar 

  11. Lavalle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Technical report, Citeseer (1998)

    Google Scholar 

  12. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  13. Likhachev, M., Ferguson, D.I., Gordon, G.J., Stentz, A., Thrun, S.: Anytime dynamic a*: an anytime, replanning algorithm. ICAPS 5, 262–271 (2005)

    MATH  Google Scholar 

  14. Lozano-Perez, T.: Spatial planning: a configuration space approach. In: Autonomous Robot Vehicles, pp. 259–271. Springer, Berlin (1990)

    Chapter  Google Scholar 

  15. Mattingley, J., Boyd, S.: Cvxgen: a code generator for embedded convex optimization. Optim. Eng. 13(1), 1–27 (2012)

    Article  MathSciNet  Google Scholar 

  16. Mirrazavi Salehian, S.S., Figueroa, N., Billard, A.: A unified framework for coordinated multi-arm motion planning. Int. J. Robot. Res. 37(10), 1205–1232 (2018)

    Article  Google Scholar 

  17. Park, M.G., Jeon, J.H., Lee, M.C.: Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing. In: ISIE 2001. 2001 IEEE International Symposium on Industrial Electronics Proceedings, vol. 3, pp. 1530–1535. IEEE (2001)

    Google Scholar 

  18. Petersen, K.H., Napp, N., Stuart-Smith, R., Rus, D., Kovac, M.: A review of collective robotic construction. Sci. Robot. 4(28), eaau8479 (2019)

    Google Scholar 

  19. Sünderhauf, N., Brock, O., Scheirer, W., et al.: The limits and potentials of deep learning for robotics. Int. J. Robot. Res. 37(4–5), 405–420 (2018)

    Article  Google Scholar 

  20. Vedaldi, A., Zisserman, A.: Efficient additive kernels via explicit feature maps. IEEE Trans. Pattern Anal. Mach. Intell. 34(3), 480–492 (2012)

    Article  Google Scholar 

  21. Wise, K.D., Bowyer, A.: A survey of global configuration-space mapping techniques for a single robot in a static environment. Int. J. Robot. Res. 19(8), 762–779 (2000)

    Article  Google Scholar 

  22. Zucker, M., et al.: Chomp: covariant hamiltonian optimization for motion planning. Int. J. Robot. Res. 32(9–10), 1164–1193 (2013)

    Article  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation (NNSF) of China under Grant U1713203, 51729501 and 61803168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Tao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, JW., Xu, J., Hou, Y., Xu, H., Wu, Y., Zhang, HT. (2020). Task-Oriented Collision Avoidance in Fixed-Base Multi-manipulator Systems. In: Chan, C.S., et al. Intelligent Robotics and Applications. ICIRA 2020. Lecture Notes in Computer Science(), vol 12595. Springer, Cham. https://doi.org/10.1007/978-3-030-66645-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66645-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66644-6

  • Online ISBN: 978-3-030-66645-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics