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Abstract A socialoid (our term) is an integrated collection of data and models
about a society. As such, and accepting that it can never be complete, it is
a computational model of a society. We are in the early stages of building a
socialoid for Philadelphia, PA. We call it the Philadelphioid. The Philadelphioid
is a diachronic (temporal), mashed, geographic information system (GIS) with
an extensive integrated library of integrated analytics tools. The purpose of this
chapter is to articulate our design rationale for the Philadelphioid and to illustrate
its underlying concepts and premises. Central among these concepts is the principle
of solution pluralism, which enjoins us to use analytics and visualization to create
and explore multiple solutions to decision problems. We illustrate an application of
this philosophy by discussing analysis pertaining to food deserts carried out with
the Philadelphioid.

1 Introduction

Data on and about the lives of cities are abundant, although how best to harness
and support data-driven insights for urban environments remains an open question.
Put another way, modeling with urban data is not only or is not just an information
problem, it is also a design problem. In the context of attempting to solve or address
socioeconomic problems through modeling, we focus on designing an information
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system oriented toward optimization problems, which is to say problems of how
best to allocate existing but limited resources.

In this chapter, we focus on a common urban design use case in which resources
are available for improving services and data are available for assessing proposed
configurations, yet, inevitably, resources are insufficient and data are incomplete,
and so the task is to make the best of the situation. Essential to that goal, in our
view, are two requirements for supporting public deliberation, which we conceive of
as being broadly interactive, affording open and accessible support of multifaceted
exploration of possibilities. The first of these requirements is that relevant data be
curated, validated, and made available in an open system. The second requirement
is that the open system affords discovery and comparison of multiple options by
a broad public. Our aim here is to describe progress we have made to date in
the specific context of food deserts in Philadelphia, with emphasis on the second
requirement.

Our principled response to the first requirement is to build a socialoid for
Philadelphia. A socialoid (our term) is an integrated collection of data and models
that reflect the complex societal fabric constituting everyday social life. Accepting
that no socialoid can ever be complete, we may think of them as computational
models of their target societies. Such models can assist with large-scale planning,
can computationally address problems that are otherwise off-limits, and can deliver
data-driven insights to stakeholders, among other possibilities (Bankes 1993). This
chapter discusses a work-in-progress socialoid for Philadelphia, PA. We call it the
Philadelphioid, conceived as a diachronic, mashed GIS with an extensive integrated
library of integrated analytics tools (beyond those commonly found in GIS). As
such it is an example of what we can call a diachronic, mashed, with analytics GIS
(DMA-GIS).1 Our purpose in this chapter is to introduce the project and its goals,
as well as to present and discuss certain innovative (and we hope widely useful)
contributions arising from the project. In addition to contributing to HCI and IS
research on urban data, we have a specific interest in presenting the Philadelphioid
as an example of designing information systems in response to significant social
problems.

Our principled response to the second requirement (to support discovery and
comparison of multiple design options) is to adopt the stance of what we call
generalized optimization. Conventionally, when an optimization problem is posed,
a single, best optimal solution (aka decision) is sought, usually by either the
exact or heuristic method. As such, conventional optimization ignores our second
requirement, which is to support discovery and comparison of multiple good
solutions, recognizing that data are always incomplete and models inexact. In
generalized optimization, we begin with an optimization problem, specify a set of
decisions of interest (DoIs), and then use computational means to discover elements
of the set of DoIs.

1The Philadelphioid in its current state—including shape files, associated data, heuristic optimiza-
tion code in Python, data generated by this code, and MAD modeling in Python with the generated
data—is freely available from the authors.
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To illustrate, our focus problem in this chapter is the optimal placement of
a number of grocery stores for the sake of relieving the food desert problem in
Philadelphia. We define our DoIs as placements of five grocery stores so as to do
well at minimizing the number of people in a food desert. We develop a heuristic
search technique that generates a plurality—hundreds, even thousands—of good-
quality placement designs. We then develop a multiattribute decision (MAD) model
that compares the designs in the discovered DoIs using an expanded data set that
brings to bear information about the designs that were too complex to consider
in the heuristic search for DoIs. Although our data are limited (as is always the
case) and we are focused only on Philadelphia, the methods we use are general and
intended to be transferable to other urban environments and problems.

Philadelphia flourishes in informative online GIS applications, including Policy
Map,2 Open Data Philly,3 Plan Philly,4 Culture Blocks,5 Community Commons,6

Community Health Explorer,7 Community Health Database,8 Next City,9 and
FixList.10 Many of these examples include temporally conditioned data, thereby
supporting diachronic analysis. In addition, these initiatives typically present results
using analytics tools, although these are largely limited to data visualization. Our
project goes beyond the functionality of these kinds of systems, which might be
characterized as rich, state-of-the-art online GIS applications, to develop next-
generation applications that meet the following goals:

1. In general, we want to support research and to “house scholarship.” That is, we
want the Philadelphioid to serve as (1) a repository of data, procedures, reports
of research results, and other intellectual work products, (2) a primary tool for
conducting research, and (3) a primary tool for supporting social deliberation.
We see its development as open-ended, and we proceed inspired by, and very
much in the spirit of, the Wisconsin Idea.11

2. Support for diachronic (time-based, longitudinal) data and analysis. In terms of
standard GIS, this implies that the system delivers multiple maps with layers
conditioned by a time frame. The key to this delivery is that the results are easy
to use and interpret for human readers.

3. Support for mashing, that is, for pulling together and integrating data from
multiple disparate sources. Not only must the data be obtained and combined,

2http://hdl.library.upenn.edu/1017/76970.
3https://www.opendataphilly.org/.
4http://planphilly.com/.
5http://www.cultureblocks.com/.
6http://www.communitycommons.org/maps-data/.
7http://cityofphiladelphia.github.io/community-health-explorer/.
8http://hdl.library.upenn.edu/1017/88388.
9https://nextcity.org/.
10http://thephiladelphiacitizen.org/stacey-mosley-fixlist/.
11See, e.g., http://www.wisc.edu/wisconsin-idea/ and https://en.wikipedia.org/wiki/
Wisconsin_Idea.
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but it must be managed, archived, and subject to provenance control and
documentation. This includes support for linked data (e.g., linked open data,12

and Hafford 2014).
4. Assume (and support) GIS capabilities as well as other forms of visualization

such that the delivered analysis eases comprehension of results for its readers.
5. Support for a broad range of social modeling and analytics. Data- and model-

driven decision support for urban stakeholders is a main focus of the project.

This chapter describes our efforts to meet these objectives through the Philadel-
phioid, drawing inspiration from existing scholarship on urban data and decision
modeling.

2 Background: Smart Cities and Urban Data Modeling

Our work is connected to an interdisciplinary body of scholarship that considers the
intersection of urban environments and data, sometimes gathered under the label
smart cities, or cities where digital technologies are embedded into infrastructure
(Smyth and Helgason 2010). These initiatives emphasize using novel technologies
to gather data about everyday life in ways that can lead to increased efficiency and
automation of urban systems management (Klauers et al. 2014, Zheng et al. 2014).
As a paradigm of urban design, smart cities have been critiqued as problematic
for ethical surveillance and the corporatization of urban life (Kitchin 2013). In
particular, the flows of data comprising smart cities tend to be one-directional, with
data being gathered from but not accessible to individual city residents (Klauers
et al. 2014, Odom 2010), even as the stories told with this data tend to benefit
commercial interests (Söderström et al. 2014), or to support narrow political views
of urban participation (Halpern et al. 2013, Vanolo 2014). A core thread that
emerges across these critiques is an insistence on acknowledging that while smart
city initiatives are intended to benefit urban residents, the distribution of those
benefits is often uneven, with disparities that reflect existing inequalities of race,
class, and privilege.

Researchers have noted the opportunities of smart cities as media-rich design
environments for provoking new relationships to technology (Di Mascio et al.
2016, Messeter and Johansson 2008). Previously, a variety of outcomes have been
produced from urban data, including location-based social media data to detect
events (Schwartz et al. 2013, Xia et al. 2014) and activity patterns (Cranshaw
et al. 2012, Gallacher et al. 2015), using crowdsourced data to manage hyper-
local city services (De Melo Borges et al. 2016) and to encourage learning about
neighborhood information and resources (Claes and Moere 2013). In the context of

12See, e.g., http://labs.europeana.eu/api/linked-open-data-introduction, http://doi.org/doi:10.
4018/jswis.2009081901, https://www.w3.org/DesignIssues/LinkedData.html, and http://www.
linkeddatatools.com/semantic-web-basics.
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research that pertains to food deserts, Choudhury et al. (2016) used a mass analysis
of Instagram posts to develop models for detecting food deserts, with a fairly high
accuracy. Similarly interested in detection, Yu and Nahapetian (2013) developed a
food consumption app to gain a grounded account of the kinds of food available for
purchase within a given neighborhood or city, with the goal of producing maps that
can be used for advocacy purposes.

These projects tend to rely on social media data, smartphones, and mobile apps
and more specifically on the locative functionality of mobile phones, meaning the
ability to tag social media content with geographic coordinates. In contrast to this
emphasis on events and activity, our work on modeling is intended to provide an
example of how to develop sophisticated models for understanding city space using
accessible data analysis tools. These modeling projects have implications for both
scientific and policy applications.

3 Modeling for Scientific Applications and Policy Purposes

Whether as individuals or as institutional actors, people can rarely make use of all
of the disparate data sources available to them for making decisions. Reasons are
many and are well covered in such works as Georges et al. (2016), Laurel et al.
(1990), Sweller (1994), Todd and Benbasat (1994). Here, we address the use of
computational models for informing stakeholders of consideration sets for decisions
that are driven by actual data. Models, broadly construed, are both tools for and
primary work products of applied and theoretical research. Although boundaries are
inevitably fuzzy, it is useful for present purposes to think in terms of four kinds of
models.

1. Presentation and visualization. Standard GIS, such as those referred to above,
are largely visual presentations of data. They, along with other forms of data
visualization, are prototypical examples of this kind of modeling.

2. Description. Regression and classification models are prototypical approaches
for describing relationships in data. They are able to condense and summarize
large amounts of data and afford our seeing of significant patterns in the data.
This is true of supervised learning and unsupervised learning algorithms.

3. Prediction or forecasting. These models take an explicitly diachronic perspec-
tive, allowing us to predict what has not yet been observed (or not used
in constructing the model). Valuable as they are, these kinds of models are
challenging in our context because so much of available data is synchronic
(cross-sectional), not diachronic (longitudinal). Even so, forecasting models
constitute an important class of models for socialoids and DMA-GIS in general.

4. Prescription. Prescriptive models aim to support decision-making. They intro-
duce the concept of an objective function to be optimized. We solve them in
order to find decisions (actions to be taken) that do well with regard to a given
objective. Prescriptive models are very common in engineering, policy-making,
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and business (operations research (OR), management science, etc.). Constrained
optimization models are a prime example, whether expressed as mathematical
programs or not.
Multiattribute decision (MAD) models are another important class of prescriptive
modeling. We discuss them in the next section.

Prescriptive modeling with spatial data and problems is comparatively underdevel-
oped. The “urban OR” field, for example, had impressive successes in the 1970s but
has since withered from lack of support by financially challenged urban interests.
This said, there is certainly ample high-quality work to draw upon and with contem-
porary informatics resources (GIS, cloud computing, advances in metaheuristics,
the open-source culture, etc.). We believe that prescriptive modeling for socialoids,
and urban OR problems generally speaking, is primed for great advances. In cases
where stakeholders have not yet defined the totality of the problem (i.e., wicked
urban problems), models with inclusive data can estimate many scenarios in a less
emotionally charged environment (Davies and Nutley 2000). For these reasons,
prescriptive modeling is an important, but hardly exclusive, focus of our project.
With that in mind, we now discuss some of our efforts and results in this regard.

4 Modeling Example

4.1 Generalized Optimization

So far, we have defined the Philadelphioid as an integrated information system
of complex and multifaceted urban data, and we argued that modeling with this
data can point to solutions for addressing significant socioeconomic problems.
We illustrate these latter claims by focusing on the problem of food deserts
(Cannuscio et al. 2014, Mayer et al. 2014), at present a serious and persistent
issue in Philadelphia. Food deserts present a serious urban problem, with dramatic
health consequences that can include increased rates of obesity and poor nutrition
(Ploeg et al. 2009). These consequences may be especially acute for vulnerable and
immobile populations—the elderly and the young. Given the pressing nature of the
issue and the broad availability of grocery store locations, food deserts were chosen
as a modeling example to outline usability of the Philadelphioid and thus socialoids.

While definitions of food deserts can vary, in general, the term refers to neigh-
borhoods where residents experience severe shortages in local access to grocery
stores (Bernstein and Shierholz 2014). The 0.5-mile criterion is the lowest of three
suggested distances by Ploeg et al. (2009) and the Philadelphia health department.
They introduce three distance markers: for rural areas, a distance of up to 10 miles
is feasible for not being considered living in a food desert; for urban areas (such
as Philadelphia), a 0.5–1.0 mile walking distance is considered feasible. Of course,
the cutoff of 0.5 mile is simply a parameter in our modeling and can be changed
at will, which is a major advantage of computational modeling. By this criterion,
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Fig. 1 The current situation
in Philadelphia. Black dots
represent supermarkets; gray
lines represent streets

about two-thirds (968,081 of 1,526,006 people) of Philadelphia’s population live in
a food desert (Fig. 1). A question then is “given additional resources for placing n

new grocery outlets, where should they be placed?” This is the design question we
address with the Philadelphioid as an information system.

Complicating any approach to answering this question is the fact that models
are inaccurate and inevitably fail to include important data for the problem. This
may happen because the data are not available, because including the data would
make the model prohibitively expensive computationally, and for many other
reasons (Bankes 1993). Attempting to determine solutions for placing grocery stores
immediately raises a host of continent questions: Who should receive priority for
being served? The old? The young? Ethnic minorities and if so, which ones? What
about communities of common interest? How, if at all, can distance be mitigated
by public transportation? By proximity to places of employment? It is a challenging
task even listing the relevant criteria and/or to have agreement between stakeholders,
let alone finding relevant and usable data to incorporate into a tractable model.

For these reasons, we adopted the philosophy of solution pluralism and general-
ized optimization (Chou et al. 2014, Hall et al. 2013, Kimbrough and Lau 2016) in
which we seek multiple good solutions to the question at hand, rather than a single
“best” (optimal) solution.13 The plurality of solutions—the discovered DoIs—are
then to be used for collective deliberation, which we demonstrate next.

Before describing our model in depth, we offer a final caveat: while we focus
in this chapter on supermarket placement, there are a number of other means of
mitigating the social and health consequences of food deserts, including education,
transportation, affordable housing, and access to medical care and expertise. These

13What counts as a good solution will of course be problem specific. In Kimbrough and Lau
(2016), four types of good solutions are identified for constrained optimization problems generally:
(A) feasible, with near-optimal objective values; (B) feasible, with objective values better than a
given threshold and having large amounts of slack on the constraints; (C) infeasible, but having
small amounts of constraint violations; and (D) infeasible, with amounts of constraint violation
below a given threshold and having objective values superior to the optimal. In the case of food
deserts, good solutions are feasible and serve total populations nearly as large as that served by the
heuristically best (heuristically optimal) solution discovered.
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approaches are almost certainly more effective in combination than isolation; by
concentrating on geographic placement of grocery stores, we do not mean to imply
that this is the only solution, or the only use for the Philadelphioid, in better
understanding food deserts. We hope to address one facet of food deserts as a social
ill, but our discussion should not be viewed as a single antidote for combating food-
related social injustices.

4.2 Heuristic Optimization

To begin, we frame the problem as a location-allocation problem, a constrained
optimization problem with the objective of maximizing the number of people
served, by the placement of the n outlets (full-line supermarkets). In this example
n = 5. There is no larger reason n = 5 is the selected number, as any number would
outline the usability of the Philadelphioid to solve problems just as well. However,
even this simple formulation presents a challenging combinatorial optimization
problem. We shall now briefly describe our computational approach to solving
for n = 5 additional supermarkets, which yielded 1024 high-quality solutions. In
the next sections, we describe how the Philadelphioid helps us make use of these
solutions.

The data is based on the 2010 US census data plus geo-coded locations for
the 97 full-service grocery stores in Philadelphia. For each of the 18,874 census
blocks, we compute the taxicab distance to the closest supermarket from its centroid.
Population and income data are available, as are further demographic data such
as population counts for Caucasian American, African American, and other ethnic
groups, as well as counts of population above 65 years of age and population under
15 years of age. The current disposition of the existing grocery stores is far from
optimal with regard to maximally serving population with supermarkets. Figure 1
shows the current situation of Philadelphia. Figure 2 shows areas that are in/not in a
food desert (using taxicab distance, a census block more than 0.5 miles away from
a supermarket is counted as located in a food desert).

Fig. 2 Black dots represent
supermarkets; dark gray areas
surrounding them represent
areas that are reasonably
covered by the supermarket.
The remaining light gray area
represents the Philadelphia
food desert
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Our heuristic algorithm for placing the n (= 5 here) new grocery outlets
works as follows. It is a variant of a standard greedy algorithm for location
allocation (Kimbrough and Lau 2016). Given census blocks (polygons in GIS) and
supermarkets (points in GIS), the goal of the described point-to-polygon location
allocation problem is placing five new supermarkets so that a maximum number
of people are added to the count of people that do not live in a food desert. This is
achieved using a greedy heuristic that places one supermarket after another, meaning
placing the first supermarket, updating the situation in the data and then placing
the best supermarket given the new updated situation, and so on. At each step,
the choice is greedy optimal because we simply enumerate the choices. Overall,
however, when placing more than one outlet, this is not optimal (Kimbrough and
Lau 2016). The heuristic does reduce the computation from 188745 options to about
18874×5 options. (Our algorithm, see below, worked with all 18,874 census blocks
in Philadelphia.)

In our greedy algorithm, selection of locations for new supermarkets is purely
based on population, i.e., on minimizing population in a food desert. We introduce
solution pluralism into our algorithm as a way of circumventing this limitation.
When the heuristic places a supermarket, it saves the top four locations for that
supermarket. Upon completion of a run, the heuristic algorithm will return 20
different locations, 4 options for each of the 5 new locations. The combinations
provide 45 = 1024 options for placing 5 new supermarkets. Of course, 1024 cannot
be said to be the best number of options generated, but it is adjustable via the
algorithm should experience indicate that other values should be used. We find that
1024 is large enough that it contains a variety of distinct and interesting solutions.
As described next, the 1024 options for the position of best solution are further
evaluated using utility functions.

4.3 Designing MAD Models

Based on the previous description on how we produced 1024 good solutions for
the Philadelphia food desert problem, we now need to discuss how this plurality
of solutions can be assessed and deliberated upon in a principled and accessible
way. We discuss in this section a very general approach meeting these requirements:
multiattribute decision (MAD) models, built with the SMARTER technique. In the
following section, we describe the particulars of its application to our food desert
data.

It is often the case that we need to assess multiple outcomes or entities on
several dimensions or attributes. To generalize the scenario, consider comparing
restaurants. We consider price, quality, distance from home, service, as well as
other attributes. Rarely, if ever, do we find a single outcome (e.g., restaurant) that
is as good as or better than the alternatives on every single attribute of interest.
Consider how we might represent the familiar problem of choosing a restaurant on
a particular occasion. It is often the case that we need to assess multiple outcomes
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Table 1 Restaurants with attributes

Restaurant name Food Decor Service Cost

Abbey Grill 14 16 16 $26.00

Academy Café 15 16 15 $23.00

Adobe Café 16 12 15 $18.00

Alaina’s Fine Food 21 15 20 $19.00

Alberto’s Newtown Squire 19 20 19 $31.00

Al Dar Bistro 16 14 14 $20.00

Alexandar’s Table at Chaucer’s 17 14 16 $19.00

Alexander’s Café 17 17 16 $26.00

or entities on several dimensions or attributes. Table 1 presents a generic example of
multiattribute data (having nothing to do with food deserts). It shows comparative
scores for a number of Philadelphia restaurants on each of the four dimensions, viz.,
the attributes food quality, decor quality, service quality, and cost.

It often happens that we need to make trade-offs among the attributes in order
to arrive at an accurate, as opposed to emotionally driven, overall score (the utility
or more generally an index) for a possible choice. Multiattribute decision (MAD)
modeling has as its purpose the construction of mathematical models for making
these trade-offs (Kimbrough and Lau 2016, Yoon and Hwang 1995).

Returning to Philadelphia’s recognized problem of food deserts (Cannuscio et al.
2014, Johann et al. 2014, Mayer et al. 2014), we modeled census data at the
block level, other data at the census block group level, and the locations of the 97
supermarkets in Philadelphia. Recall that we then asked the question: Supposing
resources were available to add five new supermarkets, where should they be
added? We implemented a heuristic optimization procedure for location analysis
(see Heuristic Optimization) to find candidate decisions, based upon maximizing
the population served within 0.5 mile of a supermarket. Recall again that employing
a philosophy of solution pluralism (finding and using multiple solutions or decisions
for a problem; see below), we used the heuristic optimization procedure to find 1024
good decisions for locating these 5 stores. Table 2 displays scores on 6 attributes
for the best 12 decisions discovered. Rows correspond to candidate decisions and
columns to their served populations on the indicated attributes.

For many purposes, it will be useful to construct a simple additive MAD model,
in which the utility or index of each alternative is a weighted sum of the utilities of
the alternative’s attribute scores. This is readily expressed clearly in mathematical
notation. Our additive model is

U(xi) =
n∑

j=1

wjuj (xi,j ) (1)

where i ∈ objects or choices, j ∈ the n attributes, xi is choice i, wj is the
weight on attribute j , uj is the utility function on attribute j , and xi,j is the score
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Table 2 Attributes of the top 12 discovered decisions for adding five grocery stores in Philadel-
phia. A: total population served. B: Caucasian American population served. C: African American
population served. D: Other ethnic population served. E: Population over 65 served. F: Population
under 15 served

Rank A B C D E F

1 649,965 263,256 277,075 109,634 97,419 143,685

2 649,743 263,295 276,784 109,664 97,438 143,680

3 647,220 263,383 274,298 109,539 97,129 142,958

4 649,536 261,676 278,377 109,483 97,333 143,959

5 649,491 262,288 277,321 109,882 97,196 143,571

6 649,269 262,327 277,030 109,912 97,215 143,566

7 646,973 262,673 274,532 109,768 96,954 142,901

8 649,062 260,708 278,623 109,731 97,110 143,845

9 649,054 262,536 277,048 109,470 97,234 143,537

10 648,832 262,575 276,757 109,500 97,253 143,532

11 646,973 263,177 274,291 109,505 97,074 142,922

12 648,625 260,956 278,350 109,319 97,148 143,811

of object/choice i on attribute j . (The scores in Tables 1 and 2 are xi,j values.)
We follow the method of Edwards and Barron (1994), called SMARTER. It is
maximally simple and has good theoretical backing and empirical success (Dawes
1979, Kimbrough and Lau 2016). Of course, it is possible to develop more complex,
and one might hope more accurate, models. There is a good theory for this (Edwards
and Barron 1994, Keeney and Raiffa 1993, von Winterfeldt and Edwards 1986), but
the burden on the users is much increased. SMARTER models are excellent points
of entry to MAD modeling. We shall now unpack the model and discuss how all
of its elements may be obtained with minimal user input (if that is what the user
wants).

Let X be a table or array of outcomes and their scores. In terms of Table 1, X is
the interior twelve rows and four columns. xi,j is the element of X in the ith row and
j th column. For example, x3,2= 12 and is the score for the Adobe Café on decor. We
need to convert all of the scores to a common range so that they may be compared.
We choose the [0,100] range and transform each of the scores in X as follows:

uj (xi,j ) = 100 × xi,j − x−
j

x+
j − x−

j

(2)

where:

• xi,j is the score of object/choice i on attribute j .
• x+

j (x−
j ) is the best (worst) score on attribute j .

For example, from Table 1, if the attribute is food (j = food), then x+
j =24 and

x−
j =14.
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• uj (xi,j ) is the utility (desirability, index value) on attribute j of the score on
attribute j of object/choice i.
For example, from Table 1, if the object is Al Dar Bistro (i = Al Dar Bistro) and
the attribute is cost (j = cost), then the object is xij and its utility uj on i is score

uj (xi,j ) = 100 × $20 − $31

$18 − $31
= 84.6 (3)

We also need to find weights, wj , for each attribute. To do so we use the method of
rank weights. We simply ask the user to rank in order the attributes by importance or
value, and then we calculate weights based on the rankings only. (This has to be done
properly. We pass over the details because they are known and readily available.)
Here is the formula for doing this:

wk = 1

n

n∑

j=k

1

j
(4)

where wk is the weight on the kth attribute by rank (so w1 is the weight on the first-
ranked attribute), n is the number of attributes, and the highest ranking attribute has
a k value of 1 (i.e., the best to worst rank order is 1, 2, 3, . . . , n).

With four attributes as in our restaurant example, if the attributes food, decor,
service, and cost are ranked in that order, then the (rank, weight) pairs are (1,
0.5208), (2, 0.2708), (3, 0.1458), and (4, 0.0625).

4.4 Using the MAD Models

MAD models of the SMARTER variety potentially apply to any situation in which
there is a table of scores, X, in which rows correspond to distinct entities, columns
to attributes of the entities, and the xi,j are scores for the entity attributes. In
our context, this range of applicability is indeed very large. Synchronically, the
entities to be compared co-exist at a given time. These might be different plans for
adding grocery stores, different redistricting proposals, geographic entities such as
wards, and much else. Attributes of interest might include total population, income
distribution, demographics (income, ethnicity, age distribution), voting behavior,
access to public transportation, presence of services such as police and fire stations,
etc.

Under either perspective, we advocate the philosophy of solution pluralism: use
the data and the models to generate multiple possible decisions, and then evaluate
this plurality of options, taking into account information not present in the data and
models (see Chou et al. 2014, Hall et al. 2013, Kimbrough and Lau 2016). MAD
models are entirely apt tools for this purpose.



The Socialoid: A Computational Model of a City 211

MAD models, then, plausibly have a wide scope of applicability for socialoids
and DMA-GIS. The basic work flow in getting them built is remarkably simple:

1. The user: Based on a system presentation, identifies the collection of entities to
be compared.

2. The user: Based on a system presentation, identifies the entity attributes to be
included in the model and for each attribute identifies its preference sense (Is
more better or is less better?).

3. The user: Based on a system presentation (and using theory about how to do
this), rank orders the attributes.

4. The system: Assembles the model and presents a ranking of the selected entities.
5. The user: Explores the results and comes to a judgment.

At this point, it is possible to provide a variety of general services for MAD
models that support post-solution analysis (Kimbrough and Lau 2016). The user in
this scenario is a human, preferably a user with considerable insight on the models
to be chosen and a good understanding of the domain. To note some main examples
and the questions they raise:

1. Sensitivity analysis:
Are there small changes in parameter values that will result in large changes in
outcomes according to the model? If so, what are they, and which parameters
have the largest sensitivities, i.e., which parameters if changed by small amounts
result in large changes in model outcomes? Which parameters have small
sensitivities?

2. Missing data and implausible data services:
Where are the missing data? How should any missing data be handled? What
about apparent outliers?

3. Outcome reach analysis:
Given an outcome predicted or prescribed by the model, and a specific desired
(or feared) alternative outcome, how do the assumptions of the model need to
be changed in order to reach the outcome(s) in question? If so, what is the
cheapest or most effective way to do this? Outcome reach questions arise on
the degradation side as well. By opting to accept a degraded outcome, we may
free up resources that can be used elsewhere.

4. Robustness analysis:
Which decisions or policy options of the model perform comparatively well
across the full range of ambient uncertainty for the model?

It is evident that a SMARTER MAD model affords much scope for automation
of post-solution analysis (including automation to check with the user).

Focusing again on our data and results, Table 2—fundamentally similar in
structure to Table 1—presents multiattribute data for the food desert problem.
Results show that when adding five supermarkets to Philadelphia minimizing a
0.5-mile taxicab distance as the indicator on living in a food desert, the number of
people not living in a food desert can be raised from 557,925 to 640,065. The 1024
discovered solutions raise the number of people not living in a food desert to an
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average of 639,675, which is an insignificant difference to the solutions discovered
by the heuristic.

The perspective of solution pluralism has much to add here. While the 1024
discovered solutions do not differ greatly in the number of people in a food desert,
they do differ significantly in other aspects. Considering only the best 12 options,
as shown in Table 2, all other columns differ by more than the best population value
in column A and the average unserved population (639,675). Thus, the quality of
the solutions with regard to the other criteria is more diverse. Solution diversity
allows us to differentiate between the solutions considering all criteria—the goal of
solution pluralism combined with MAD models. Following up on this observation,
we use these differences to evaluate all 1024 solutions, by applying a MAD model
to score and rank all of the solutions on an expanded set of criteria.

Table 3 presents the weighted single attributes (columns A–F) and overall utility
scores (column G) for a SMARTER MAD model we developed and applied to the
1024 solutions from the greedy heuristic, using additional data, as indicated in the
table. As described above, given the data, we need just two additional sources of
information in order to build the model, whose results we see, in part, in the table.
The first information item we need is the sense for each of the six attributes (A–F).
In our model, we stipulated that for attributes A–E, more is uniformly better, but for
attribute F (average income), less is better. Thus, we sought to favor lower-income
individuals. The second information item we need is the rank order of the attributes

Table 3 Weighted utility
values for the top 20
solutions. ID: Solution rank
on population served. A:
Population served. B: African
American population served.
C: Other ethnic population
served. D: Population over 65
served. E: Population under
15 served. F: Income per year
(in $1000). G: Net utility

ID A B C D E F G

131 2.70 6.04 5.95 22.62 35.81 10.24 83.36

67 2.72 5.93 5.96 23.26 35.80 9.51 83.19

643 2.69 2.81 9.96 12.80 39.40 15.31 82.96

579 2.71 2.70 9.97 13.44 39.39 14.59 82.80

899 2.69 5.88 6.02 22.11 35.08 10.20 81.97

128 2.76 5.67 6.06 23.36 34.67 9.42 81.93

195 2.69 5.88 5.94 23.13 36.08 8.17 81.90

691 2.69 2.80 9.98 12.57 38.75 15.03 81.81

129 2.73 5.58 6.08 23.52 34.65 9.25 81.81

835 2.71 5.77 6.03 22.75 35.07 9.47 81.80

3 2.73 5.84 5.96 22.85 35.84 8.58 81.80

64 2.78 5.56 6.07 24.00 34.66 8.69 81.76

135 2.65 6.11 6.12 20.70 35.34 10.75 81.66

627 2.71 2.69 9.99 13.21 38.74 14.30 81.64

65 2.75 5.47 6.09 24.17 34.64 8.51 81.63

640 2.74 2.43 10.06 13.54 38.26 14.50 81.54

707 2.68 2.65 9.94 13.31 39.67 13.25 81.51

179 2.67 6.02 5.88 22.29 34.84 9.81 81.50

71 2.67 6.00 6.13 21.34 35.33 10.02 81.49

641 2.71 2.35 10.08 13.70 38.24 14.32 81.41
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in importance. This we stipulated as A = 6, B = 5, C = 4, D = 2, E = 1, and
F = 3. Thus, E = population under 15 served is the most important attribute in the
model, and A = total population served is the least important. Of course, A is what
the heuristic optimization procedure sought to maximize. With this ranking, the
weights are A = 0.02777778, B = 0.06111111, C = 0.10277778, D = 0.24166667,
E = 0.40833333, and F = 0.15833333. Points arising:

1. Comparing Tables 2 (raw data) and 3 (MAD model processed data), we can see
that the MAD model has done real work for us in discriminating among the
plurality of options. Looking at the raw data in Table 2, it is really not possible
to discern a better row from a worse row, yet the MAD model data, excerpted in
Table 3, does this comprehensively for all 1024 options.

2. Only one—ID 3, or rank 4—of the top 60 solutions from the heuristic optimiza-
tion appears in the top 20 solutions identified by the MAD model.

3. Several of the top 20 utility model solutions have rank scores worse than (greater
than) 500 in the heuristic (population served only) optimization solutions.

4. Figure 3 shows a portion of Philadelphia. Existing grocery stores are indicated as
black dots. The five green dots represent the locations of the five grocery stores
in the best heuristic optimization solution.

5. When we examine the top heuristic optimization solutions, they closely resemble
what we see in Fig. 3.

6. Remarkably, of the top 10 solutions from the utility model, eight also closely
resemble the solution in Fig. 3. However, two are somewhat different, ranks 4
and 8 (rows 4 and 8 of Table 3).

7. Figure 4 adds, as yellow stars, the five locations from the rank 4 solution from the
utility model. We see that four of the five locations are quite close to those of the
heuristic optimization, yet the fifth location is quite different from its counterpart
in the heuristic optimization. The rank 8 solution in the utility model is similar.

Fig. 3 Green dots represent top solution from the heuristic optimization, placing five grocery
outlets; black dots indicate existing grocery stores in Philadelphia
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Fig. 4 Green dots represent top solution from the heuristic optimization, placing five grocery
outlets; black dots indicate existing grocery stores in Philadelphia. Yellow stars represent the rank
4 solution from the utility model

Table 4 (a) (ID 1 to 5)
presents information on green
dots of Figs. 3 and 4, and (b)
(ID 6 to 10) presents
information on yellow stars of
Fig. 4

ID Street Number Longitude Latitude

(a)

1 S 17th Street 1820 −75.175 39.928

2 Ritner Street 1014 −75.165 39.921

3 Potter Street 3150 −75.116 39.996

4 S 18th Street 368 −75.172 39.947

5 S 54th Street 324 −75.231 39.955

(b)

6 Sigel Street 1750 −75.176 39.928

7 Ritner Street 1014 −75.165 39.921

8 Potter Street 3150 −75.116 39.996

9 Waverly Street 1750 −75.171 39.946

10 N Water Street 3150 −75.129 39.997

Table 4 shows further information pertaining to Fig. 4. As Fig. 4 suggests, the
green dots and yellow stars twice coincide at the same supermarket location; these
are supermarkets with IDs 2 and 7 as well as supermarkets with IDs 3 and 8.
Supermarkets with IDs 5 and 10 are those that are very far away from each other.
The last four supermarkets (IDs 1 and 6 (the supermarket couple further south in
Fig. 4) and 4 and 9 (the supermarket pair further north in Fig. 4)) are close and so
would serve a similar part of Philadelphia. To give an idea about distances: 1 and 6
are 130 meters apart and 4 and 9 are 120 meters apart.

5 Discussion and Future Work

Urban environments are complex and messy arrangements of people, institutions,
and infrastructure. Making decisions about how to address a city or neighborhood
problem—such as access to healthy food–is not solely a matter of access to data; it is
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also about being able to model data in such a way as to be usable. More specifically,
information systems must be designed in a way that allows for interpretation
and can inform difficult decisions through the presentation of distinct possibilities
for addressing identified problems. We have described the Philadelphioid as an
information system designed to aid in research and deliberation surrounding local
socioeconomic concerns. Using real data to model solutions for a known problem,
our modeling design leverages solution pluralism to provide a robust set of
possibilities for tackling resource allocation in a discrete geographic setting.

In evaluating the efficacy of the Philadelphioid, it is safe to draw two conclusions
from the heuristic optimization and MAD exercise discussed above. First, the
solution from the optimization, green dots in Fig. 3, is quite robust within the
consideration set we explore. Each of the 1024 solutions is distinct, and even
adding the MAD model, incorporating information from other attributes does little
to change this conclusion. The optimization solution appears to be a good one, but
so are very many other solutions nearby geographically. Thus, if we accept it as an
anchor point, there is ample room for adjusting locations slightly (by a few census
blocks) in response to further information (availability of land, public transit, etc.).
We see this proposed solution as a guide rather than a fixed, unyielding demand, i.e.,
the Philadelphioid is meant to inform rather than dictate decisions. The second point
is that there are a few credible, distinctly different alternatives to the heuristic opti-
mization solution, viz., as seen in Fig. 4. In terms of public deliberation, we might
think of this solution as in the consideration set, but as having a burden of proof to
overcome when compared to any solution very similar to the optimization solution.

The larger point here is that we can see that the Philadelphioid has produced
substantial material for affording public discussion presented in a way that aids
comprehension of the proposed solutions. It does this in large part by producing
a consideration set—a plurality of solutions—of high value. It then evaluates a
feasible number that are appropriate for deliberation and presents them in easy-
to-digest ways.

This last point serves as a segue to discussion of future work. As a tool with
both academic and activist capacities, the Philadelphioid’s design and potential use
cases are open-ended. We have laid out with considerable specificity important
basic elements of a socialoid. The challenge now is to articulate and implement
generalizations of what is on display here. These include at a minimum more
data, especially diachronic data, richer modeling, further algorithms for generating
multiple solutions, more nuanced forms of MAD modeling, and much more in the
way of interactive, visualized post-solution analysis. Diachronically, the entities
can be conditioned by time frames (e.g., by decade) and the attributes just about
anything of interest, particularly where they touch on issues of broad social
and cultural import (such as historical patterns of police brutality, indicators of
neighborhood change, and so on). For example, the entities might be geographic
regions of the city conditioned by a time frame and the attributes quality of life
scores for the region-times across multiple dimensions (income, crime, health, etc.).
Building chronological accounts of urban environments would provide researchers
as well as policymakers with tools for understanding in a more precise and grounded
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way how city landscapes and neighborhoods are being affected by dynamics of
gentrification and fluctuations in population and wealth. We are, in particular, keen
to explore this with diachronic data on grocery store locations and population data.
Has the Philadelphia food desert problem been getting better or worse since 1960?
Addressing this and many related questions is within reach by adding existing data
to the present system.

The ability to support diachronic data would allow us to model time series; that
is, we could observe change in time which, in turn, would allow different models of
the factors influencing social and cultural patterns to be tested. For example, if we
have a theory that the distribution of grocery stores in the city is influenced by some
set of demographic factors distributed over space and time, we could use the time
series in the model to test this theory. Analysis of these time series would allow a
researcher to model and test a variety of theories against actual spatiotemporal series
with different degrees of granularity. We could, for example, look at the impact of
demographic changes on both property values and food deserts. Alternatively (or in
addition), we could analyze the impact of the introduction of casinos on property
values, crime rates, and bankruptcy rates in the surrounding neighborhoods. From
a policy perspective, we could also model the impact of potential governmental
actions and ordinances on the community, as well as model how past policies have
influenced the well-being of various populations in the city.

Other areas of interest for future work could shift from decision support theory
in urban data contexts to interpersonal and institutional settings. For example, one
could envision evaluating solution quality from the socialoid compared to focus
group discussions or expert opinions. Measuring stakeholders’ cognitive load in
the deliberation and decision process could also be significant. We note that for
a richer set of design decisions, this kind of modeling and data gathering should
be informed by research on interpersonal and organizational communication, as
well as decision theory. Another area of interest is applying the concept of solution
pluralism on political redistricting, i.e., the creation of voting districts based on
smaller precincts. As a highly politicized issue with many, and often unclear,
objectives, initial work shows that a variety of solutions with different properties
can be created and evaluated based on several dimensions (Haas et al. 2020, Miller
et al. 2018). Finally, we hope that very many socialoids can be built. This will afford
comparative analysis between cities and neighborhoods, which can yield insights
and is required to undergird provisional findings with any single socialoid. Indeed,
as scientists, we are “stronger together” by creating a plurality of solutions with a
plurality of socialoids.
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