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Abstract. In this paper, we revisit the distributed coverage control
problem with multiple robots on both metric graphs and in non-convex
continuous environments. Traditionally, the solutions provided for this
problem converge to a locally optimal solution with no guarantees on
the quality of the solution. We consider sub-additive sensing functions,
which capture the scenarios where sensing an event requires the robot to
visit the event location. For these sensing functions, we provide the first
constant factor approximation algorithms for the distributed coverage
problem. The approximation results require twice the conventional com-
munication range in the existing coverage algorithms. However, we show
through extensive simulation results that the proposed approximation
algorithms outperform several existing algorithms in convex, non-convex
continuous, and discrete environments even with the conventional com-
munication ranges. Moreover, the proposed algorithms match the state-
of-the-art centralized algorithms in the solution quality.

Keywords: Multiple and Distributed Robots, Sensor Networks

1 Introduction

Distributed Coverage is a very well studied problem [11,13,22,23,26] with ex-
tensive multi-robot applications, such as environmental monitoring [12], and
surveillance [20]. The objective is to deploy a set of robots to cover an environ-
ment such that each robot services or senses the events closer to that robot than
any other robot. The events arrive according to a spatial distribution, and the
cost of sensing an event is a function of the distance from the robot to that event.
The distributed coverage control problem is to minimize the total coverage cost
of the environment. The existing distributed algorithms to solve this problem
converge to a locally optimal solution with no guarantees on the quality of the
solution. In this paper, we provide distributed approximation algorithms to solve
the problem in non-convex continuous and discrete environments.

The first distributed algorithm for coverage control in convex environments
was proposed by Cortes et al. [11]. The algorithm utilizes Lloyd’s descent to
converge to a locally optimal solution, and the partition of each robot is defined
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using Voronoi partitioning. The robots communicate with the robots in their
neighboring partitions to implement the algorithm.

Building on the Lloyd’s descent-based algorithm in [11], there has been ex-
tensive studies on the coverage control problem in non-convex environments.
In [10,9], the authors map non-convex environments through a diffeomorphism
to a convex region and then solve the problem using the Lloyd’s algorithm [11]
before mapping the locally optimal solution back to the original environment.

For non-convex polygonal environments, a distributed algorithm was pre-
sented in [7], where the Lloyd’s algorithm for convex environments was com-
bined with a local path planning algorithm to avoid obstacles. A key idea intro-
duced in [25] is to consider geodesic distance when computing partitions. In [15]
and [19], the authors construct the Voronoi partitions based on the visibility of
the robot in the presence of obstacles. Unlike the approaches mentioned above,
we discretize the non-convex environment, and solve the coverage problem on
the discrete environment and provide guarantees on the solution quality.

The approach of converting a continuous non-convex environment to a dis-
crete environment is used in [13,2,6]. We utilize the same approach, but are
able to characterize the cost of the solution obtained from the discretized en-
vironment in the corresponding continuous environment as a function of the
sampling density. The authors in [27] study the coverage problem defined on an
undirected graph and present a distributed algorithm that converges to a local
optimum. Their algorithm requires the robots to know the information of the
neighbors of their neighbors. In this paper, we make the same assumption on the
communication range of the robots, but establish approximation guarantees.

A closely related problem to the discretized coverage control is the facility
location problem [14,24] where the objective is to minimize the cost of the robots
and the total service time of the demands arriving on the vertices. A special case
of this problem is the k-median problem [3,18,1] where the objective is to place k
robots on vertices of the graph to minimize the total service time. A centralized
approximation algorithm was presented for the k-median problem in [3], and
the analysis of our distributed approximation algorithm leverages this central-
ized approximation algorithm. The authors in [1] consider the k-median problem
with mobile robots, namely the mobile facility location problem, and provide an
approximation algorithm for the objective of minimizing a linear combination of
the relocation cost of the mobile robots and the expected service time of the de-
mands. In [21], we consider the mobile facility location problem with sequentially
arriving demands where the goal is to minimize a linear combination of the relo-
cation costs and the expected service times of the demands in a time horizon, and
propose a centralized algorithm which provides solutions within a constant factor
of the optimal solution. Authors in [4] provide a randomized-distributed algo-
rithm for the k-median problem with constant factor approximation in Euclidean
environments. In contrast, we consider more general non-convex environments
and provide a deterministic approximation algorithm.

Contributions: Our main contributions are threefold. First, given a contin-
uous non-convex coverage problem, we generate a corresponding instance on
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a metric graph, and characterize the performance of the discrete solution on
the continuous problem (Section 3). Second, we provide a constant factor ap-
proximation algorithm for the distributed coverage problem on metric graphs
(Section 4). To the best of our knowledge, this is the first deterministic approx-
imation algorithm for the distributed multi-robot coverage problem. We prove
the approximation results in Section 5. Third, we show through extensive simu-
lations that the proposed algorithm outperforms several existing approaches in
convex and non-convex environments, and matches the centralized algorithms
in solution quality (Section 7).

2 Continuous and Discrete Coverage Problems

We begin by reviewing the coverage problems in both continuous [11] and discrete
environments [27].

2.1 Continuous Environment

Consider m mobile robots in a compact environment with obstacles and let X
be the obstacle free subset of the environment. There is an event distribution
φ : X → R+ defined over the environment. Let d(p, q) be the length of the
shortest path between two locations p and q in X . The sensing cost of an event
at location p by a robot at q is a strictly non-decreasing function f : R+ → R+ of
d(p, q). Following the non-convex problem formulation in [7], which extends the
original formulation in [11], the continuous problem is defined as the problem
of finding the set of locations in the environment for Authorsthe robots that
minimizes the sensing cost of the events, i.e.,

min
Q∈Xm

H(Q) = min
Q∈Xm

∫
X

min
qi∈Q

f(d(p, qi))φ(p)dp. (1)

Without loss of generality, in the rest of the paper we assume that
∫
X φ(p)dp =

1. Observe that the best sensing cost for an event is provided by the closest robot
to that event location. Then for a given configuration Q, we partition the envi-
ronment into Voronoi subsets as follows:

Vi(Q) = {p ∈ X |d(p, qi) ≤ d(p, qj) ∀qj ∈ Q \ {qi}}.

The robots move according to some dynamics q̇i = g(qi, ui) where the compu-
tation of the shortest path between two configurations of the robot is tractable.
Typically first order dynamics g(ri, ui) = ui is considered for the robots in cov-
erage control literature [11]. We are interested in the distributed version of the
coverage problem, where the robots have local information on the other robots
and each robot computes its control input locally.



4 A.Sadeghi, A.B.Asghar, S.L.Smith

2.2 Discrete Environment

Consider a metric graph G = (S, E, c) where S is the vertex set, E is the set of
edges between the vertices, c is the metric edge cost and let w be the weight on
the vertices. Given a team of m robots, the coverage problem on graph G, is the
problem of finding a set of m locations to optimally cover the vertices of G, i.e.,
minimize D(Q) =

∑
v∈S minq∈Q w(v)c(v, q). For a given configuration Q ∈ Sm,

we can partition the vertices into m subsets

Wi(Q) = {u ∈ S|c(u, qi) < c(u, qj) ∀qj ∈ Q \ {qi}}.

If there exists a vertex that has equal distance to two or more robots in Q,
then the vertex is assigned to the robot with smaller unique identifier (UID).
Robots travel on the edges of the graph and the control input to a robot is a
sequence of edges leading to its destination vertex.

Centralized Approximation Algorithm: The centralized version of this prob-
lem is a well-known NP-hard problem called the k-median problem [3]. The best
known approximation algorithm for this problem on metric graphs is a central-
ized local search algorithm which provides solutions within a constant factor of
the optimal [1]. Starting from a configuration Q, the centralized local search
algorithm swaps p vertices in Q at a time with a subset of p vertices in S \ Q.
If the new configuration improves the coverage by at least some ε0 > 0, then we
call this move a valid local move. The procedure terminates if there are no more
valid swaps improving the total sensing cost. We will refer to this local search
algorithm as CentralizedAlg in the rest of the paper. The solution obtained
from CentralizedAlg is within 3+2/p+o(ε0) of the globally optimal solution.

We focus on the distributed version of this problem introduced in [27] where
the robots use only the local information to compute their control input. In
the following section, we establish the connection between the continuous and
discrete coverage problems.

3 From a Continuous to a Discrete Problem

To establish a connection between the coverage problem in continuous and dis-
crete environments, we first convert the continuous coverage problem to a cov-
erage problem in a discrete environment through sampling of the environment.

Let S be the set of samples of X with dispersion ζ [16], where ζ is the
maximum distance of any point in the environment X from the closest point
in S, i.e., ζ = maxp∈X minu∈S d(p, u), (See Figure 1). We construct a metric
graph G = (S, E, c) on sampled locations S, where E is the edge set and c is a
function assigning costs to the edges of the graph. The cost of an edge between
two sampled locations u, v ∈ S is c(u, v) = f(d(u, v)). Let σ(v) for v ∈ S be the
points in X closer to v than other samples in S, i.e.,

σ(v) = {p ∈ X |d(p, v) ≤ d(p, u) ∀u ∈ S \ {v}}.
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Fig. 1: Sampled locations in an environment with dispersion ζ.

With a slight abuse of notation, let σ−1(p) be the closest sample in S to p ∈ X .
The function w : S → R+ assigning weights to the vertices of the graph is
w(v) =

∫
p∈σ(v) φ(p)dp. We assume the following property on the sensing function.

Assumption 1 (Subadditivity of sensing function). We assume that the
sensing cost function f is a sub-additive function, i.e.,

f(d(p, u) + d(u, v)) ≤ f(d(p, u)) + f(d(u, v)).

For instance f(x) =
√
x and f(x) = x are sub-additive functions.

Remark 1. In applications such as dynamic vehicle routing problems [5,8] and
facility location problems [24] where the sensing cost is determined by the dis-
tance traveled by the clients, the sensing function falls under Assumption 1.

Due to Assumption 1, the cost function c on the edges of the graph G satisfies
the triangle inequality, i.e., for all u, v, z in S

c(u, v) = f(d(u, v)) ≤ f(d(u, z) + d(z, v))

≤ f(d(u, z)) + f(d(z, v)) = c(u, z) + c(z, v).

The following result establishes a connection between the sensing costs of an
approximate solution to the discrete coverage problem and the optimal coverage
in continuous environment.

Theorem 1. Consider a continuous coverage problem on environment X with
optimal solution S∗, and its corresponding discrete instance obtained through the
set of samples S with dispersion ζ. Then if Q is the solution obtained from an α-
approximation algorithm for the discrete coverage problem instance, the sensing
cost of Q on the corresponding continuous problem is H(Q) ≤ αH(S∗)+o(f(ζ)).
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Proof. We have,

H(Q) =

∫
X

min
qi∈Q

f(d(qi, p))φ(p)dp

≤
∫
X

min
qi∈Q

f(d(qi, σ
−1(p)) + d(σ−1(p), p)))φ(p)dp (triangle inequality)

≤
∫
X

min
qi∈Q

[f(d(qi, σ
−1(p))) + f(d(σ−1(p), p))]φ(p)dp (Assumption 1)

=

∫
X

min
qi∈Q

f(d(qi, σ
−1(p)))φ(p)dp+

∫
X
f(d(σ−1(p), p))φ(p)dp

≤ D(Q) + f(ζ)

∫
X
φ(p)dp = D(Q) + f(ζ). (2)

Let S∗ = {q∗i |i ∈ [m]} be the optimal configuration of the continuous problem,
and S∗G be the configuration constructed by moving each robot location in S∗

to the closest sampled location in S. Also note that,

D(S∗G) =
∑
qi∈S∗G

∑
u∈Wi

c(u, qi)w(u) =
∑
i∈[m]

∑
u∈Wi

c(u, qi)

∫
p∈σ(u)

φ(p)dp

=
∑
qi∈S∗G

∑
u∈Wi

∫
p∈σ(u)

f(d(u, qi))φ(p)dp

≤
∑
qi∈S∗G

∑
u∈Wi

∫
p∈σ(u)

[ min
qj∈S∗G

f(d(qj , p)) + 2f(d(u, p)) + f(d(p, u))]φ(p)dp

≤ H(S∗G) + 3f(ζ), (3)

where the first inequality is due to triangle inequality and Assumption 1. Fur-
thermore, we have,

H(S∗G) =
∑
qi∈S∗G

∫
Vi(S∗G)

f(qi, p)φ(p)dp ≤
∑
qi∈S∗G

∫
Vi(S∗)

f(qi, p)φ(p)dp

≤
∑
qi∈S∗G

∫
Vi(S∗)

f(d(q∗i , p))φ(p)dp+

∫
X
f(d(qi, q

∗
i ))φ(p)dp

≤ H(S∗) + f(ζ), (4)

where the second inequality is due to triangle inequality and Assumption 1. Let
Q∗G be the optimal solution to the discrete coverage problem on graph G, then
D(Q) ≤ αD(Q∗G) ≤ αD(S∗G). Therefore, by Equations (2), (3) and (4), we have,
H(Q) ≤ αH(S∗) + (4α+ 1)f(ζ). ut

A 5-approximation algorithm for the centralized coverage on metric graphs
is provided in [3]. In the following section, we provide the first distributed ap-
proximation algorithm for the coverage in metric graphs.



Distributed Coverage of Non-convex Environments 7

4 Distributed Algorithm On Graphs

In distributed coverage control algorithms for continuous environments, and their
adaptations to discrete environments, the algorithm drives each robot to the po-
sition inside its partition such that the sensing cost of its partition is minimized,
i.e., the centroid of its Voronoi cell in the continuous problem. Although these al-
gorithms converge to locally optimal solutions, there are no global guarantees on
the quality of the solution. The following example provides a graph construction
where such “move to centroid” algorithms perform poorly.

(a) Locally optimal configuration under
move to centroid control law

(b) A better configuration

Fig. 2: Example environment with 3n+ 1 vertices and n+ 1 robots

Example 1. Consider the environment shown in Figure 2 with 3n+1 vertices, n+
1 robots and unit costs for the shown edges. We consider the metric completion
of the shown graph. The vertices are partitioned into two subsets: 1) V1 with
2n + 1 vertices and unit weights on the vertices and 2) V2 with n vertices of
weights ε for some 0 < ε � 1. The highlighted vertices show the configuration
of the robots. The configuration in Figure 2a is a locally optimal solution under
the move to centroid control law with global cost of n(n + 1). However, the
configuration shown in Figure 2b provides a global cost of n+nε. Therefore, the
locally optimal solution provided by the move to centroid algorithm provides a
solution with cost at least n+1

1+ε of the optimal cost on the shown instance.

4.1 High-level Idea

The basic idea of our distributed coverage algorithm is to imitate the local-
search algorithm for the k-median problem (See Section 2.2), namely Central-
izedAlg, in a distributed manner. The challenge in performing a local move
in the distributed manner is that the robots are only aware of the partitions
of their neighboring robots, therefore, the effect of a local move on the global
objective is not known to the robots. However, we break down a local move in
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Fig. 3: Local move in the centralized algorithm (green) and its equivalent sequence of
moves in the distributed algorithm (red).

CentralizedAlg into a sequence of moves between neighbors. Let robot j with
position qj and neighbors N (j) be the closest robot to vertex v. Then a local
move of CentralizedAlg swapping the position qi of robot i with vertex v is
equivalent to a sequence of swaps inside Q between the neighboring robots and a
move from qj to v. Figure 3 shows an example of a local move in the centralized
algorithm performed by a sequence of local moves.

For this distributed coverage algorithm, we define the minimum communica-
tion range and neighbouring robots as follows:

Definition 1 (Neighbour robots). Given a configuration Q, the set of neigh-
bours of robot i is defined as

N (i) = {j ∈ [m]|d(qi, qj) ≤ 4 max{max
p∈Vi

d(p, qi),max
p∈Vj

d(p, qj)}}

where Vi is the Voronoi partition of robot i in the continuous environment.

Remark 2. The conventional definition of neighbours in the literature [11] is
that two robots are neighbours if the intersection of their Voronoi cell bound-
aries is not empty. Therefore, the distance of two neighbouring robots i and j can
be 2 max{maxp∈Vi d(qi, p),maxp∈Vj d(qj , p)}. In [27], authors show that in envi-
ronments represented as graphs, with the conventional communication range, a
move inside a robots partition might change the partition of the neighbours of
their neighbours. Therefore, they assume that the robots communicate with the
neighbours of their neighbours, which is analogous to twice the communication
range needed to implement the Lloyd’s descent-based algorithms in continuous
environments. In Section 7, we evaluate the performance of the algorithm with
both the conventional and our definition of neighbours.

We extend the definition of neighbouring robots in a continuous environment
to capture the cases where the graph instance for the discrete coverage problem is
given and the underlying continuous environment is unknown. Consider a graph
instance G = (V,E, c), then for each edge (u, v) ∈ E we add a dummy vertex
z with zero weight and replace edge (u, v) by two edges (u, z) and (z, v) such
that c(u, v) = 2c(u, z) = 2c(z, v). We let c(u, v) for (u, v) /∈ E be the length
of the shortest path in G between u, v. Let Wi be the partition of robot i, in
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Algorithm 1 DistributedCoverageAlgorithm

1: Each robot sets itself to active
2: while there exists an active robot do
3: for any active robot i ∈ {1, . . . ,m} do
4: if

∑
u∈Wi

c(u, qi) > 0 then
5: LocalMove(i)
6: SendCompletionMessage()

7: Robot i deactivates

the resulting graph. Then the equivalent definition of the neighbouring robots is
given as follows:

Definition 2 (Neighbour robots in graphs). Given a configuration Q, the
set of neighbours of robot i is defined as

N (i) = {j ∈ [m]|c(qi, qj) ≤ 4 max{max
p∈Wi

c(p, qi), max
p∈Wj

c(p, qj)}}.

4.2 Detailed Description

We are now ready to provide a detailed description of the proposed algorithm.
Algorithm Framework (Algorithm 1): For the ease of presentation, we provide

a description of the algorithm in which the robots perform local moves sequen-
tially. Each robot is assigned a unique identifier UID. Starting from an active
robot, say robot i, the robot will make the possible local moves using Algo-
rithm 2. If it can not make a local move, the robot will become inactive and will
send a completion message to the neighbouring robots via SendCompletion-
Message (line 6 of Algorithm 1). After execution of the local move by a robot,
the robot becomes inactive. The next active robot to execute the local move can
be selected in a distributed manner using a token passing algorithm [17], or any
other method that ensures each robot gets a turn at making a local move. The
process terminates when all the robots become inactive.

Local Move of Robot i (Algorithm 2): At an iteration of Algorithm 2, let the
current configuration of robots be given by Q = {q1, . . . , qm} where the vertices
in the partition of robot i are given by Wi. The robot i considers moving to
a vertex v ∈ Wi from its current vertex qi. This move can only change the
sensing cost of the vertices in the neighbouring robots’ partitions (See Lemma 1
in Section 5). Hence, the robot i can calculate the new neighboring partitions
after a potential move to v. In line 2 of Algorithm 2, robot i calculates the
change in local objective δv due to this move for all v ∈Wi. Since only robot i is
executing Algorithm 2 at the current time, δv also represents the change in the
global objective function. If minv∈Wi

δv ≤ −ε0, robot i moves to q′i = arg min δv
and the iteration terminates (local move type 1). If there is no valid local move
of type 1, then robot i calculates the change in local objective if it moves to v
and a new robot appears at qi, i.e.,

ρv =
∑

j∈N (i)

∑
u∈Rj(v)

w(u)[c(u, v)− c(u, qj)], (5)
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Algorithm 2 LocalMove(i)

1: while ∃ a local move do
2: Calculate δv for all vertices in Wi

3: if minv δv ≤ −ε0 then
4: Move to v
5: else
6: Calculate Γi = {ρv|v ∈Wi} . Using Equation (5)
7: SendMessage(Γi, 1)
8: ReceiveMessage()
9: SendAcknowledgement()

where Rj(v) = {u ∈ Wj |c(u, qj) > c(u, v)} represents the vertices in the
partition of robot j that are closer to v than the robot j at qj . Robot i then
passes the message with the set Γi = {ρv|v ∈ Wi} and a counter set to 1 to
all its neighbors (line 7 of Algorithm 2) and waits for a response (line 8 of Al-
gorithm 2). If the response is a rejection from all the neighbors, Algorithm 2
terminates. Otherwise it selects the acceptance message with the largest change
in the objective and moves to the corresponding vertex. It also sends an acknowl-
edgement message to the neighbor k whose message was selected so that robot
k can move to qi.

Response of Other Robots (Algorithm 3): When a robot k receives messages
from its neighbors, it follows Algorithm 3. Since messages from only one sender
robot are propagating through the system at any time, it can select the message
with the smallest counter value if it receives messages from multiple neighbors.
The neighbor who sent the message with the smallest counter value is called the
parent of robot k. It sends back a rejection message to all other neighbors. If the
counter value of the message was one, it means that the message originated from
its neighboring robot, say i. Then robot k calculates the change in the sensing
costs of the vertices in Wk \Rk(v) if it moves to vertex qi and robot i moves to
vertex v resulting in configuration Q′ = {qj |j ∈ N (k)} ∪ {v}, i.e.,

`v =
∑

u∈Wk\Rk(v)

min
q∈Q′

[c(u, q)− c(u, qk)]w(u), (6)

If minv(ρv+`v) ≤ −ε0, robot k decides to move to qi and sends an acceptance
message to robot i with the vertex arg minv ρv + `v and the change associated
with this move. Otherwise it increments the counter and sends the message with
Γi to its neighbors. If the counter value in a message is greater than one, robot
k calculates ` as follows:

` =
∑
u∈Wk

min
j∈N (k)

[c(u, qj)− c(u, qk)]w(u) (7)

If minv(ρv+`) ≤ −ε0, robot k sends an acceptance message back to its parent.
Otherwise it increments the counter and sends the message to its neighbors.

In function ReceiveMessage in line 8 of Algorithm 2 and line 13 of Algo-
rithm 3, if any robot receives at least one acceptance message from its neighbors,
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Algorithm 3 Receiver

Input: message = (Γi, MessageCounter)

1: if MessageCounter = 1 then
2: Calculate `v for all v in the message . Equation (6)
3: if ∃v in the message with ρv + `v ≤ −ε0 then
4: send acceptance message to parent
5: else
6: SendMessage(Γi, MessageCounter + 1)

7: else
8: Calculate ` . Equation (7)
9: if ∃v in the message with ρv + ` ≤ −ε0 then

10: send acceptance message to parent
11: else
12: SendMessage(Γi, MessageCounter + 1)

13: ReceiveMessage()

it passes the message with lowest increase in sensing cost value to its parent. If
it receives rejection messages from all its neighbors, it sends back a rejection
message to its parent. Robot i selects the move with maximum improvement in
the sensing cost and sends back an acknowledgment using SendAcknoledg-
ment to the accepted messages. Robots that receive the acknowledgment move
to their parent’s location. If there is no more local move available, robot i sends
a completion message using SendCompletionMessage to the neighbouring
robots which will be propagated to all the robots. Then the next active robot
executes LocalMove.

5 Analysis of the Algorithm

In this section, we provide analysis on the quality of the solutions provided by
the proposed algorithm.

5.1 Correctness and Approximation Factor

Prior to providing the main results on the correctness and approximation factor
of the algorithm, we provide two results on the change in the sensing cost of
vertices in the partitions of the neighbouring robots with a move of a robot.

The following result shows that a move by a robot inside its partition can
only change the sensing cost of the vertices in its neighbouring partitions.

Lemma 1. Consider a vertex z ∈Wj where robot j at position qj is the closest
robot to z. Then robot j is closer to z than any vertex in the partition of a
non-neighbour robot, i.e., c(z, qj) ≤ mini/∈N (j) minu∈Wi

c(z, u).

Proof. Proof by contradiction. Suppose there exists a move to vertex v ∈ Wi

by robot i that changes the sensing cost of a vertex z ∈ Wj of a non-neighbour
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robot j, i.e., c(v, z) < c(qj , z) which is equivalent to d(v, z) ≤ d(qj , z) by the
monotonicity of function f . By the triangle inequality, we have,

d(qj , v) ≤ d(v, z) + d(qj , z) ≤ 2d(qj , z). (8)

Observe that v ∈Wi, then c(qj , v) ≤ c(qi, v) which implies d(qj , v) ≤ d(qi, v).
By Equation (8), we have d(qi, qj) ≤ d(qj , v) + d(qi, v) ≤ 2d(qj , v) ≤ 4d(qj , z).

Then by the definition of the neighbouring robots in Section 4.1, robots i
and j are neighbours. This is a contradiction. ut

Observe that the proof of Lemma 1 holds for both definitions of neighbouring
robots in continuous and discrete environments.

Also, the following result shows that if a robot i moves anywhere in the
graph, then the vertices previously in Wi will be assigned to robot in N (i).

Lemma 2. For any vertex z ∈ Wi, there exists a robot j ∈ N (i) at qj where
c(z, qj) ≤ c(z, qk) for all k /∈ N (i).

Proof. First we prove the result using definition of the neighbour robots in
Definition 1. Suppose there exists k /∈ N (i) and vertex z ∈ Wi such that
c(z, qk) < minj∈N (i) c(z, qj). Let P be the shortest path from z to qk. Let p
be the point on the path where P intersects the boundary of Voronoi cell of
robot i. The point p is not on the boundary of robot k, otherwise the distance
between d(qi, qk) ≤ 4 max{maxp∈Vi d(qi, p),maxp∈Vk

d(qk, p)} which is a contra-
diction. Hence, the point p is on the boundary of a neighbouring robot j. There-
fore, there is a path from qj to z shorter than P , then c(qj , z) = f(d(qj , z)) ≤
f(d(qk, z)) = c(qk, z).

Now we prove the same result for the case where the underlying contin-
uous coverage problem is unknown and neighbours are defined according to
Definition 2. Suppose there exists k /∈ N (i) and vertex z ∈ Wi such that
c(z, qk) < minj∈N (i) c(z, qj). Observe that if two vertices of partitions Wi and
Wk share an edge in E, then by the definition of neighbouring robots in Section
A, robots i and k are neighbours. Therefore, since k and i are not neighbours,
then there is no shared edge between the vertices in Wi and Wk. Let P be the
path on G from qk to z. Then the path P should contain a vertex u in a par-
tition of another robot j which is a neighbour of robot i. Then by the metric
property of the graph, c(qj , z) ≤ c(qj , u) + c(u, z) ≤ c(qk, u) + c(u, z) = c(qk, z),
where the second inequality is due to u ∈ Wj and c(u, qj) ≤ c(u, qk). This is a
contradiction. ut

Then we provide the following result on the change in the global objective
with a successful move in the distributed algorithm.

Lemma 3. If a local move is accepted by the robot, then the global objective
improves by at least ε0.

Proof. A local move falls under the following cases:
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(i) Since, by Lemma 1, a move of type 1 can only change the sensing cost of the
neighbouring robots. Then the result is trivial for the local moves of type 1.

(ii) If the local move consists of a move by the robot i that is executing Local-
Move to a vertex v in its partition and a neighbouring robot j moving to
vertex qi. Let Q′ be the configuration after the local move, then the change
in the global objective ∆D = D(Q′)−D(Q) is given by the following:

∆D =
∑
k∈[m]

∑
u∈Wk

min
q∈Q′

w(u)c(u, q)−
∑
k∈[m]

∑
u∈Wk

w(u)c(u, qk). (9)

They by Lemma 1 and 2, the sensing cost changes only for vertices in u ∈
∪k∈N (i)Wk, therefore,

∆D =
∑

k∈N (i)

∑
u∈Wk

w(u)[min
q∈Q′

c(u, q)− c(u, qk)]

=
∑

k∈N (i)

∑
u∈Rk(v)

w(u)[c(u, v)− c(u, qk)]

+
∑

k∈N (i)

∑
u∈Wk\Rk(v)

w(u)[min
q∈Q′

c(u, q)− c(u, qk)].

Observe that the sensing cost for vertex u ∈ Wk \ Rk(v) for robot k at
qk ∈ Q′ = N (i) ∪ {v} \ {j} does not change, therefore, we have

∆D =
∑

k∈N (i)

∑
u∈Rk(v)

w(u)[c(u, v)− c(u, qk)]

+
∑

u∈Wj\Rj(v)

w(u)[min
q∈Q′

c(u, q)− c(u, qj)].

Hence, the result follows immediately as ∆D = ρv + lv.
(iii) Suppose the local move consists of a move by the robot i that is executing Lo-

calMove to a vertex v in its partition and a sequence of moves between the
neighbouring robots. Without loss of generality, let 〈v, qi, qi+1, . . . , qj−1, qj〉
be the sequence of moves between the neighbouring robots where each robot
moves to the previous vertex of the preceding robot in the sequence. Let
Q′ be the configuration after the local move, then the change in the global
objective is given by Equation (9). Observe that each robot accepts only
the message from the parent robot. Therefore, among the neighbours of the
robots in the sequence only the parent of each robot moves.
First we show that the change in the sensing cost under this sequence of
moves only occurs for vertices in ∪k∈N (i)Wk and vertices in Wj . Let u be a
vertex assigned to robot k′ ∈ [m]\{j∪N (i)} in configuration Q, i.e., u ∈Wk′ .
Since k′ /∈ N (i), then by Lemma 1 a move to vertex v will not improve the
sensing cost of u. Also if k′ is among the robots moving in the sequence, then
there is a robot moving to its previous location, therefore, each vertex in Wk′

will be sensed by another robot with the same sensing cost. Therefore, the
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total change ∆D in the sensing cost of the vertices becomes∑
k∈N (i)

∑
u∈Rk(v)

w(u)[c(u, v)− c(u, qk)] +
∑
u∈Wj

w(u)[min
q∈Q′

c(u, q)− c(u, qj)].

Hence, the result follows immediately as ∆D = ρv + l. ut

Now we show the following result on the valid local moves in Central-
izedAlg given the final configuration of the proposed distributed algorithm.

Lemma 4. If the proposed distributed algorithm terminates, then there is no
single swap move in the centralized local search algorithm CentralizedAlg
(See Section 2.2) that improves the objective function.

Proof. Suppose that there exists a centralized local move of robot j at vertex qj
to a vertex v ∈Wi that improves the objective function by ε0. Therefore, adding
a robot to v improves the sensing cost of the vertices in ∪k∈N (i)Wk by ρv ≤ −ε0.
Therefore, by construction of the algorithm, the robot i would have suggested
the move to its neighbouring robots. Suppose after l communications, robot j at
qj receives the message for the first time. In Line 2 (resp. Line 8) of Algorithm 3
if j ∈ N (i) (resp. j /∈ N (i)), robot j calculates the increase in the sensing cost
`v (resp. `) for the vertices in ∪k∈N (j)Wk by the move from qj to the parent
of robot j. Since robot j has rejected this offer, by Lemma 3 the change in the
global sensing cost is less than ε0. This is a contradiction. ut

Theorem 2. The proposed distributed coverage control algorithm provides a so-
lution within 5 + o(ε0) factor of the optimal configuration.

Proof. The result follows immediately from Lemma 4. The final configuration in
the distributed algorithm is a locally optimal solution for the CentralizedAlg
with single swap at each iteration, i.e. p = 1, therefore, the configuration provides
a coverage within a factor 5 + o(ε0) of the global optimal. ut

Corollary 1. Given an environment X with m mobile robots and a sampling
of X with dispersion ζ, the solution Q obtained from the proposed distributed
coverage control algorithm provides coverage cost H(Q) ≤ 5H(S∗)+o(f(ζ)+ε0),
where S∗ is the optimal solution of the continuous coverage problem.

Proof. Proof follows immediately from Theorems 1 and 2. ut

Remark 3 (Asynchronous Execution of Local Moves). In the asynchronous im-
plementation of the algorithm, instead of the robots performing local moves in
turn, the robots calculate the change in local objectives and send and receive
messages in parallel. If a robot receives messages originating from multiple active
robots, it selects the message from one of them (for instance, from the robot with
lowest UID) and runs Algorithm 3 for that message. When a robot decides to
move to a new location, it moves only if none of its neighbors are currently mov-
ing. If any of its neighbors is currently moving, it waits until all of its neighbors
stop moving and runs Algorithm 2 and Algorithm 3 again.
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As shown in the Lemmas 1 and 2, if the robot i moves in its partitions or to
a vertex v in the partition of robot j, only the cost of the vertices in N (i) and
N (j) is affected. Therefore, if a robot only moves when none of its neighbors
are moving, the change in local cost calculated by that robot is correct. Hence
the distributed algorithm presented in the paper can be implemented in an
asynchronous fashion.

6 Time Complexity

In this section, we characterize the runtime and the communication complexity
of the proposed algorithm.

Let Q0 be the starting configuration of the robots and Q∗ be the optimal
configuration for problem of coverage on graph G, then we have the following
result on the runtime of the proposed algorithm. For ε0 = 0, we follow the the
analysis similar to [27]. Since there are a finite number of possible local moves
that improve the global sensing cost, each iteration improves the global sensing

cost by at least ε′ > 0. Therefore the algorithm terminates in D(Q0)−D(Q∗)
ε′ iter-

ations. Observe that with ε0 = 0, the distributed algorithm provides a solution
within 5 factor of the optimal solution with possibly non-polynomial number of
iterations. However, we can prove convergence in polynomial time if the sampling
of the environment S satisfies the following properties.

Assumption 2. The weight of a vertex v in S is at least w0 for some w0 > 0,
i.e.,

∫
p∈σ(v) φ(p)dp ≥ w0 > 0.

This follows the common assumption in the coverage control literature where
there is a basis function defined for φ [11]. For a given w0, we remove a vertex
v with with weight w(v) < w0 from the samples and recalculate the weights on
the vertices.

Assumption 3. The ratio maxu,v∈S f(d(u, v))/minu,v∈S f(d(u, v)) is polyno-
mial in the number of the samples |S|.

For instance, if a graph is constructed via a grid sampling of the continuous
environment, where each cell is a d× d square, then we have

maxe∈E c(e)

mine∈E c(e)
=
f(
√

2|S|d)

f(d)
= O(

√
|S|),

where the second equality is by the sub-additivity of sensing function f .
For a given ε > 0 and a polynomial p(|S|,m), we have,

Lemma 5. The proposed algorithm with ε0 = εw0

p(|S|,m) mine∈E c(e) terminates

in the polynomial number of iterations, i.e.,

log(D(Q0)/D(Q∗))/ log(1− εw0

p(|S|,m)

mine∈E c(e)

maxe∈E c(e)
).
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Proof. Let Qi be the configuration of the robots at step i of the algorithm. As
the global sensing cost improves by at least ε0 after each iteration, we have,

D(Qi+1)−D(Qi) ≤ −ε0 = − εw0

p(|S|,m)
min
e∈E

c(e).

Observe that D(Qi) ≤ maxe∈E c(e). Therefore,

D(Qi+1) ≤ D(Qi)−
εw0

p(|S|,m)
min
e∈E

c(e) ≤ D(Qi)(1−
εw0

p(|S|,m)

mine∈E c(e)

maxe∈E c(e)
).

Therefore, at each iteration of the distributed coverage algorithm the sensing cost

improves by the factor of 1− εw0

p(|S|,m)
mine∈E c(e)
maxe∈E c(e)

. Hence, the algorithm terminates

in log(D(Q0)/D(Q∗))/ log(1− εw0

p(|S|,m)
mine∈E c(e)
maxe∈E c(e)

) iterations which is polynomial

in the input size, 1/ε and 1/w0. ut

Remark 4. At each iteration of the algorithm, at most m2 messages are sent
with size at most n log(maxe∈E c(e)) + log(m) bits by the robot executing Lo-
calMove. Then at most m2 messages are sent back between the robots in the
acceptance/rejection step. Finally, the SendAcknowledgment step requires
at most m messages. Hence, the communication complexity of the proposed

distributed algorithm is O(log(D(Q0)/D(Q∗))/ log(1− εw0

p(|S|,m)
mine∈E c(e)
maxe∈E c(e)

)m2).

7 Simulation Results

In this section, we evaluate the performance of the proposed distributed algo-
rithm and compare it to convex and non-convex distributed coverage algorithms
and the centralized algorithm in [1]. To construct the discrete problem described
in Section 3, we use a grid sampling of the environment. We denote the maximum
distance inside a Voronoi cell of a robot i by Rcomm = maxp∈Vi

d(qi, p) and we
evaluate the performance of the proposed algorithm with communication ranges
of 4Rcomm (See Definition 1) and 2Rcomm which is analogous to the conventional
communication model in the continuous coverage literature. In the rest of this
section, we use f(x) = x as the sensing cost function.

7.1 Convex Environments

In this experiment, we compare our algorithm to distributed Lloyd’s algorithm [11]
in convex environments. We use the Euclidean distance as the metric between two
points. The comparison is conducted in a 1500×850 environment with 100 differ-
ent event distributions. The event distributions are truncated multivariate nor-
mal distributions with mean [1400, 800] and covariance matrices Σ = [σ, 0; 0, σ]
where σ is uniformly randomly selected from interval [5, 10]×104. In this exper-
iment, the robots are initialized in the bottom left corner of the environment.
Figure 4 illustrates the percentage difference of the solutions provided by the



Distributed Coverage of Non-convex Environments 17

5 10 15 20 25
Number of Robots

0

5

10

15

20

25

30

P
er

ce
nt

ag
e

D
iff

er
en

ce
to

C
en

tr
al

iz
ed

A
lg

or
it

h
m

Lloyd’s Algorithm

Proposed Algorithm with 2 Rcomm

Proposed Algorithm with 4 Rcomm

Fig. 4: Percentage difference of the solutions of different algorithms to the solution of
the centralized algorithm

two algorithms with respect to the solution of the centralized algorithm. Ob-
serve that the proposed achieves solution quality very close to the centralized
algorithm, even with a large number of robots, while Lloyd’s algorithm provides
solutions with approximately 15% deviation.
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Fig. 5: Percentage share of attempts for different local move types which resulted in
improving the objective.

Figure 5 shows the percentage share of the different local move types. The
dashed lines show the results with 2Rcomm communication range. The single
hop Move type II is a local move which involves a robot and its neighbours in
comparison to the multi-hop local move which involves non-neighbour robots.
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Observe that the majority of the local moves are Move Type I which commu-
nicates with only the neighbouring robots. However, the local Moves of Type II
help the proposed algorithm to leave locally optimal solutions.
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Fig. 6: Percentage improvement of algorithms with random initial configurations.

Figure 6 illustrates the improvement in the sensing cost for the Lloyd’s and
the proposed algorithm in a convex environment with uniformly random initial
configurations. The results are obtained for 50 initial configurations in the envi-
ronment. Observe that even with the large number of robots where the random
configuration provides a relatively good sensing cost, the proposed algorithm
improves the solution by 50% on average. In a system of 40 robots, our pro-
posed algorithm provided ≈ 15% additional improvement on the sensing cost as
compared to the Llyod’s algorithm.

Figure 7 shows the final configuration and the paths of 10 robots for the two
algorithms in a test environment.

(a) Proposed Algorithm with 4Rcomm com-
munication range.

(b) Lloyd’s Algorithm

Fig. 7: Final configuration of the robots for the two algorithms in a test environment
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(a) Sample Environment with Obstacles
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(b) Discrete representation of the environ-
ment

Fig. 8: A sample environment with obstacles and its discrete representation

7.2 Non-Convex Environments

In this section, we compare the solution quality of the proposed algorithm with
two different communication ranges to the algorithms in [7], [27] and the cen-
tralized algorithm [1]. The experiment is conducted in a 1500×850 environment
that contains obstacles (See Figure 8a), and using 100 different event distri-
butions. The distributions are generated in the same manner as in the convex
environment experiments with uniformly random mean and covariance matrices.
The communication model in the non-convex studies are different, for instance,
two robots are neighbours in [7], if the intersection of the Voronoi cells of the
robots in the environment without obstacles is non-empty, and two robots are
neighbours in [27] if the two partitions of the robots share an edge in the dis-
crete representation of the environment. Therefore in the implementations of
algorithms in [7] and [27], we assume that robots are connected to every other
robot.

Figure 9 shows the percentage difference between the solutions of each algo-
rithm compared to the centralized algorithm. Observe that the proposed algo-
rithm even with the conventional communication range out-performs both other
algorithms by ≈ 20% on average in a system with 30 robots and matches the
solution quality of the centralized algorithm. Figure 10 illustrates the final con-
figuration and the movement of the robots using the proposed algorithm in a
non-convex environment.
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the centralized algorithm

Fig. 10: Robot movements in a non-convex environment using the proposed distributed
algorithm
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7.3 Examples of Different Local Solutions

In this section, we provide two examples for the algorithms in [27] and [7]. We
illustrate the locally optimal solution reached using these algorithms, and the
local moves considered in the proposed algorithm which helps escaping these
sub-optimal solutions.

(a) A test environment for algorithm
in [27]

(b) Final configuration with proposed al-
gorithm

Fig. 11: A discrete test environment and the final configurations of algorithm in [27]
and the proposed algorithm

Consider a discrete coverage problem with 4 vertices and 3 robots initialized
at the configuration shown in Figure 11a. The bars on the vertices of the graph
represents the weight of the vertices. By the communication model in [27], all the
robots are neighbours of each other. The local move in algorithm in [27] moves
the robots inside their partitions if the move improves the sensing cost of its
partition and the neighbouring partitions. Note that the initialized configuration
of the robots is a locally optimal solution for the algorithm in [27]. However, in
the proposed algorithm the robots will improve on current configuration with
performing single-hop move type II. Figure 11b shows the final configuration
with the proposed algorithm.

Figure 12 shows a continuous environment with a single robot. The sensing
cost of an event is a function of the geodesic distance from the robot. The
high-level idea of the algorithm in [7] is to find the centroid in the environment
without obstacles (see tvirt in Figure 12) and if the centroid is inside an obstacle,
then the algorithm projects the centroid to a face of the obstacle (see treal in
Figure 12) and moves the robot towards treal. Observe that in the scenarios
where the sensing cost is a function of the length of the shortest path between
the robot and the event location, the projection of the centroid may result in
sub-optimal solutions. However, the proposed algorithm avoids these scenarios
by solving the coverage problem on a discrete representation of the environment.

8 Conclusion

This paper considered the multi-robot coverage problem in convex and non-
convex environments. A connection is established between the solution quality
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Fig. 12: A test environment for Algorithm [7]

of the continuous coverage problem and the solution to the coverage problem on a
discrete representation of the environment. We also propose the first distributed
approximation algorithm for the coverage problem in discrete and continuous
environments and provide bound on the quality of the solution. We also charac-
terize the run-time and communication complexity of the proposed algorithm.
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2. Alitappeh, R.J., Pereira, G.A., Araújo, A.R., Pimenta, L.C.: Multi-robot deploy-
ment using topological maps. Journal of Intelligent & Robotic Systems 86(3-4),
641–661 (2017)

3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM Journal on
computing 33(3), 544–562 (2004)

4. Balcan, M.F.F., Ehrlich, S., Liang, Y.: Distributed k-means and k-median cluster-
ing on general topologies. In: Advances in Neural Information Processing Systems,
pp. 1995–2003 (2013)

5. Bertsimas, D.J., Van Ryzin, G.: A stochastic and dynamic vehicle routing problem
in the Euclidean plane. Operations Research 39(4), 601–615 (1991)

6. Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in
unknown non-convex environments. In: Distributed Autonomous Robotic Systems,
pp. 61–75. Springer (2013)

7. Breitenmoser, A., Schwager, M., Metzger, J.C., Siegwart, R., Rus, D.: Voronoi
coverage of non-convex environments with a group of networked robots. In: IEEE
International Conference on Robotics and Automation, pp. 4982–4989 (2010)

8. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.L.: Dynamic vehicle routing
for robotic systems. Proceedings of the IEEE 99(9), 1482–1504 (2011)
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