
The Surprising Effectiveness of Linear Models
for Visual Foresight in Object Pile Manipulation

H.J. Terry Suh1 and Russ Tedrake1 ??

Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
hjsuh@mit.edu, russt@mit.edu

Abstract. In this paper, we tackle the problem of pushing piles of small
objects into a desired target set using visual feedback. Unlike conven-
tional single-object manipulation pipelines, which estimate the state of
the system parametrized by pose, the underlying physical state of this
system is difficult to observe from images. Thus, we take the approach
of reasoning directly in the space of images, and acquire the dynamics of
visual measurements in order to synthesize a visual-feedback policy. We
present a simple controller using an image-space Lyapunov function, and
evaluate the closed-loop performance using three different class of mod-
els for image prediction: deep-learning-based models for image-to-image
translation, an object-centric model obtained from treating each pixel as
a particle, and a switched-linear system where an action-dependent lin-
ear map is used. Through results in simulation and experiment, we show
that for this task, a linear model works surprisingly well – achieving bet-
ter prediction error, downstream task performance, and generalization to
new environments than the deep models we trained on the same amount
of data. We believe these results provide an interesting example in the
spectrum of models that are most useful for vision-based feedback in
manipulation, considering both the quality of visual prediction, as well
as compatibility with rigorous methods for control design and analysis.
Project site: https://sites.google.com/view/linear-visual-foresight/home

Keywords: Manipulation, Piles of Objects, Deformable Objects, Image
Prediction, Visual Foresight, Vision-based Control

1 Introduction

The ability to predict the future is paramount to design and verification of
a control policy, as modeling the dynamics of a system can enable planning
and control approaches that solve tasks using the same model, or can facilitate
analyzing the behavior of the closed-loop system. Conventionally in robotics,
such dynamics are obtained using the laws of physics, and the state of the system
is often defined as generalized coordinates of Lagrangian dynamics [18].

However, it is not always clear how to estimate the physical state, or the dy-
namics of how those states evolve, directly from sensor measurements. A planar

?? This work was supported by NSF Award No. EFMA-1830901

ar
X

iv
:2

00
2.

09
09

3v
3

 [
cs

.R
O

]
 1

6
Ju

n
20

20

https://sites.google.com/view/linear-visual-foresight/home

2 H.J. Terry Suh and Russ Tedrake

Fig. 1. Description of the task, where the robot must push all the carrots to fit in the
purple target set. This real image illustrates the actual complexity of the phenomena,
as well as the difficulty of observing states of each piece of carrot from the image.

pushing task [18] is a great canonical example: not only is the center of mass of
the object hard to observe from vision without the assumption of uniform den-
sity [27], but the dynamics of the object is also unknown due to the uncertain
interaction between the object and the table [16]. On the other hand, directly
identifying the dynamics of measurements (output dynamics) offer a very general
approach to vision-based control, as it relieves the need of defining true states
of a system, or carefully designing an observer from visual input [8].

In this work, we deal with a task which epitomizes the strength of designing
policies directly in the space of measurements: a robot observes a cutting board
with diced carrots, and must find a sequence of push actions to collect them into
a desired target set. The underlying physical state of the system, and even the
cardinality of the state-space, is very difficult to observe from vision (Fig. 1).
Despite the difficulty of modeling the problem in state space, humans trivially
move around piles with ease in cooking, where diced onions and carrots are
moved to make room for other ingredients. We hypothesize that this is a case of
output feedback, where dynamic identification and control happens directly in
the space of visual measurements.

While direct output feedback offers many advantages, the dynamics of mea-
surements must often be obtained in a data-driven manner, as it bypasses obser-
vation of physical states. Combined with the success of deep learning in vision
[14], recent works in vision-based control have heavily utilized deep-learning ap-
proaches. In [8], the term “Visual Foresight” is first used to describe output
dynamics of vision, and an end-to-end neural network architecture for image-to-
image translation is presented. Other works [21,7] also treat the output dynamics
problem as an instance of image-to-image translation, and set up a deep-learning
architecture to predict future frames.

Due to the difficulty of identifying output dynamics in high-dimensional pixel
space, many of the recent works in vision-based control and intuitive physics have
argued that instead of identifying the output dynamics, a neural network-based
observer can observe the object-centric state of the system [9,10,26,23]. Since
object-centric states are lower dimensional and have more identifiable continuous
dynamics in their tasks, they were successful in showing that this approach leads
to better performance and sample efficiency. However, we challenge the generality

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 3

of this approach since object states are not always of lower dimension or have
simpler dynamics compared to visual dynamics. This is exemplified by our task
of pushing piles of small objects, or manipulating deformable objects such as
clothes or fluids. Similarly, other works have focused on identifying dynamics
over keypoints [19,20], but it is not clear how to generalize keypoints to this
problem where there are multiple small objects in a pile.

In [25], an object-centric approach using graph neural networks [23] is com-
bined with visual feature vectors to manipulate piles of objects to a desired target
set. While this approach may work if there are countable number of objects in
the scene, they may fail to deal with partial observation of the scene due to oc-
clusion, or a case where million particles of sand or water must be manipulated.
In [6], a robot finds feasible plans to manipulate piles of dirt into a target region
using A∗ search, with a learned Random Forest transition model over a grid-like
representation. However, we have questioned if this is really the right model to
fit output dynamics, and focused our attention to which class of models are more
adequate for capturing the dynamics of measurements in pixel-space.

We had started to explore this problem with a deep-learning-based approach,
where the dynamics are estimated in the latent space of visual feature vectors.
While the prediction was visually plausible, we found that we could not succeed
in achieving the downstream task due to small (in the sense of mean-squared), yet
critical errors that do not agree with physical behavior. Then, we wondered how
well a simple linear model would work. A linear model would offer principled ways
of estimating dynamics, and provide better connection with rigorous approaches
in linear systems theory. The promise of Koopman operators [24] and occupation
measures [15] is that all dynamics become linear in high enough dimensions;
perhaps the pixel coordinates are playing a similar role.

To investigate our question, we set up a simple controller using a Lyapunov
function that operates directly on images, and evaluate the closed-loop behavior
of three models: a switched-linear model where the linear map from image to im-
age is a function of discrete inputs, variations of deep-learning image-prediction
models inspired from [8,7,21], and an object-centric transport model that treats
each pixel as a particle. Through evaluations in simulation and experiment, we
find that the switched-linear model provides the best performance in image pre-
diction, downstream task, and generalization to new environments.

2 Problem Statement

2.1 Setup and Notation

As illustrated in Fig. 1, our goal is to push all carrot pieces into a desired
target set using visual feedback. We assume color thresholding or background
subtraction so that we have a greyscale image. We denote the original greyscale
image at time k as Ik ∈ RN×N , and its vectorized form as yk ∈ RN2

. Finally, the
input to the system is u ∈ R4, which is consisted of the start coordinate of the
push pi ∈ R2, the orientation of the push θ, and the push length l [25,1]. Here

4 H.J. Terry Suh and Russ Tedrake

we assume that the push surface is always perpendicular to the push direction.
Our task is to learn the discrete-time dynamics of image prediction, which can
be modeled by one of the two equivalent functions in (1).

Ik+1 = f̄(Ik, u) yk+1 = f(yk, u). (1)

Writing down the dynamics in this form also encodes our assumption of quasi-
static dynamics, where friction dominates the true dynamics of the system. Our
experiments with pushing piles of chopped carrots justify this assumption.

2.2 A Simple Lyapunov-based Controller

The original problem can be modeled by having continuous states Ik and con-
tinuous inputs u, where the goal is to drive I0 to some desired set of allowable
images SI. However, we choose to discretize the inputs by a grid in the action-
space, performing direct search. This is due to the high non-convexity of planar
pushing; most actions will not make contact with objects and produce zero gra-
dients. This point is illustrated well in the billiard example of [12]. This setup
also allows fairness for the prediction methods by allowing them to work over
the same set of inputs. Solving optimal control problems for such systems with
continuous states and discrete inputs often requires combinatorial search.

Fortunately, this problem admits a simple greedy strategy. To motivate this
controller, imagine that the true state of the system is known, which is consisted
of each particle’s position pi ∈ R2. Let X = {pi} denote the set of these particles.
Then, let Sd be the desired target set, which is a subset of R2. Our objective is
to push all the particles inside Sd. The distance from each particle to the target
set is defined by looking for the closest point in the set,

d(pi,Sd) = min
pj∈Sd

‖pi − pj‖p, (2)

where ‖ · ‖p is the p-norm, a hyperparameter in the controller. Then, we simply
average all the distances, and define this as a Lyapunov function on the set.

V (X) =
1

|X |
∑
pi∈X

d(pi,Sd). (3)

This can be interpreted as the average Chamfer distance [3] between a discrete
set of points and a continuous target set. As a sum of norms, this function
is always strictly positive everywhere except for when ∀i, d(pi,Sd) = 0, which
would mean that all the particles are inside the target set.

To extend this Lyapunov function to images, we initialize a pre-computed
distance matrix D ∈ RN×N where each element represents the distance be-
tween center of pixel and the target set. Let d denote the vectorized form of D.
Then, the Lyapunov function on images is evaluated as a weighted average of
distances, where the weight is provided from pixels. We give two expressions for
the Lyapunov function in (4), where � represents the element-wise (Hadamard)
product.

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 5

Fig. 2. Visualization of the Lyapunov function with a pentagonal target set and using
the p = 2 distance norm. The pre-initialized D matrix (left) gets multiplied with the
image (center), and the average value of elements is taken from the result (right).

V̄ (Ik) =
1

‖Ik‖1,1
D� Ik V (yk) =

1

‖yk‖1
dT yk. (4)

V̄ (Ik) is zero if and only if indices of the non-zero pixels of the images coincide
with the indices of zero elements of the D matrix, which would signify that
non-zero pixels are only placed in the target set.

Finally, we argue that the V̄ (Ik) is a Control Lyapunov Function (CLF),
since it satisfies the following property, if we assume f̄ is known:

∀I /∈ SI, ∃u s.t. ∆V̄ = V̄ (Ik+1)− V̄ (Ik) = V̄ (f̄(Ik, u))− V̄ (Ik) < 0, (5)

where SI is the set of goal images. This is due to the fact that for every image that
is not in the target set, we can always find a small particle to push towards the
target set and decrease the value of the Lyapunov function. Given this Lyapunov
function in (4), we choose a greedy feedback policy that minimizes the Lyapunov
function from its current value at every given timestep.

u∗ = arg minuV̄ (f̄(Ik, u)). (6)

The intuitive explanation of this controller is to enforce the closed-loop be-
havior of the system to resemble a bowl with the target set as the flat bottom
region (see Fig. 2). Deforming the cutting board into a bowl, the carrot pieces
will naturally fall on the target set. We hypothesize that depending on the ac-
curacy of the prediction model Ik+1 = f̄(Ik, u), the ability to descend along the
Lyapunov function will differ. A better model should be able to descend faster
along the Lyapunov function, and we use this descent curve as a task-relevant
benchmark of the predictive capability of different models.

Furthermore, we note that if the set Sd is non-convex in Cartesian coordinates
of R2, then V (X) becomes non-convex as well. However, in image space, V (yk) is
still linear (thus globally convex) function if ‖Ik‖1,1 is relatively constant for all
k (4). This process is similar to convex relaxations, where originally non-convex
problems are convexified in the space of distributions. Thus, a simple greedy
strategy will stabilize to even non-convex target sets. Finally, we exclude sets
that cannot be stabilized due to inherent mechanical limitation of the system,
such as the width of the pusher.

6 H.J. Terry Suh and Russ Tedrake

3 Models for Image Prediction

3.1 Switched-Linear Model

Model Description. In this model, we assume a switched-linear system [5],
with the following form:

yk+1 = Aiyk, (7)

where Ai ∈ RN2×N2

and i = {1, · · · , |U|} with U the discretized action space.
The action is directly represented as choosing the A matrix. One of the challenges
of working in image space is that the coordinates of the actual object is recorded
in the indices of the pixels, not the actual pixel values. Then, for a given action,
such a linear map A can act as a permutation matrix that transports pixels in
indices.

Learning of Dynamics via Least Squares. To train the model, we collect
many pairs of (yk+1, yk) that are all subject to the same action. Let there be M
such pairs. Then, we construct a data matrix by appending the column vectors
horizontally. Thus, we have two matrices Yk+1,Yk ∈ RN2×M , where the ith

column of Yk is the vectorized image before the push, and the ith column of Yk+1

is the corresponding vectorized image after the push. Then, optimal identification
of the transition matrix A can be written as a solution to the least squares
optimization problem:

A∗ = arg min
A

‖Yk+1 −AYk‖F , (8)

where ‖·‖F denotes the Frobenius norm. This is a matrix Ordinary Least Squares
(OLS) problem, and has a standard closed-form solution.

We attempt to also add constraints or add regularization terms and quantify
which least-squares method performs the best. We questioned if imposing a
permutation matrix-like structure could provide meaningful regularization for
the A matrix, and improve the test performance of prediction. We also considered
non-negativity constraints, or equality constraints such that the rows or columns
sum up to 1. These optimization problems can be easily formulated as an instance
of Quadratic Programming (QP). The general formulation of these constraints
is written down in (9).

A∗ = arg min
A

‖Yk+1 −AYk‖F

subject to A ≥ 0,
∑

i A[i, j] = 1 ∀j.
(9)

While the transcription to QP is trivial, the number of decision variables in
A ∈ RN2×N2

is N4, which can reach a million even for a 32 × 32 resolution
image. Thus, the full-scale problem is very time-consuming to solve. However, for
row-constrained or non-negative constraints, we can utilize the following relation
between the row of Yk+1 and the row of A:

Yk+1[i, :] = A[i, :]Yk, (10)

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 7

where A[i, :] denotes the ith row of A. Using this relation, it is possible to
decompose this optimization problem into N2 optimization problems with N2

decision variables, since the optimal solution of A[i, :] is the optimal solution for
the entire problem.

While the column-sum-constrained problem also presents an interesting inter-
pretation as a Markov stochastic matrix [11], it no longer possesses this natural
decomposition, and the resulting problem is too big to handle for regular QP
solvers, requiring more scalable formulations such as ADMM [22,4]. We plan to
explore more methods of dealing with large-scale constrained least squares in
future works.

Tensor Description of the Transition Matrix. To interpret the A matrix,
let us reshape A ∈ RN2×N2

into a tensor Ā ∈ RN×N×N×N . Similar to how
A[i, j] denotes how much the jth element of yk affects the ith element of yk+1,
Ā[i, j,m, n] signifies how much the pixel value of Ik[m,n] affects the pixel value
of Ik+1[i, j]. Using this relation, we can rewrite (7) as

Ik+1 = Ā×2 Ik, (11)

where ×2 denotes the 2-mode tensor product over the last two dimensions.
When the matrix is reshaped as a tensor, the structure of the tensor reveals

an interesting fact about the linear model. The rows of the A matrix can be
reshaped as an N × N image, as A[i, :] corresponds to Ā[i, j, :, :] in the tensor
representation. Then, the matrix Ā[i, j, :, :] gets element-wise multiplied with the
original image, and the grand sum of this product matrix becomes the value of
the pixel in Ik[i, j]. We call the image Ā[i, j, :, :] the kernel of the pixel Ik[i, j],
and use it as a convenient visualization of the learned linear model in the results
section (Fig. 8).

Affine Transformation on Input Images. The above process explains how
to find the optimal A for a given action u, but we need to learn every A for all

Fig. 3. In the vectorized image space, each element (red) is the result of a dot product
between the corresponding row of the A matrix (green) and the original vector (blue).
By refactoring the green row vector as an image, we can represent the red pixel as a
sum of element-wise multiplication between the green image and the blue image.

8 H.J. Terry Suh and Russ Tedrake

Fig. 4. Affine Transformation Process for Reducing Action Space Dimension

the different inputs. We note that our action space is in a Cartesian frame, and
it should be possible to utilize coordinate transforms to reduce the dimension of
the action space, similar to the approach taken in [28].

Given an action u, we can create a rectangle that represents the area swept by
the pusher, which we call the “push rectangle”. Then, we compute T ∈ SE(2), an
affine transformation from the center-of-image frame to pusher rectangle frame.
Let T(I) be the transformed image. We apply our linear map to the transformed
image, and transform the predicted image back to original coordinates by the
inverse transform T−1. To deal with the missing parts of images in the trans-
formation process, we let a mask go through the same affine transformation
M = T−1

(
T
(
1N×N)), which is used to combine the predicted image and the

original image. This process is illustrated in Fig. 4.
With the affine transforms on input, we only need to compute different Ai

matrices for the length of the push, which significantly decreases the amount of
data we need to have. We discretize push length into 5, and train an A matrix
for each one of them with 1000 sample pairs of (Ik, Ik+1).

3.2 Deep-Learning Model

We use a deep-learning model based on [8,7,21,9], which was our original ap-
proach to this problem. This architecture (Fig.5) computes the latent-space vec-
tors of the image Ik through a convolutional autoencoder [17], approximates the
dynamics on this latent-space vector with multiple layers of Multi-Layer Per-
ceptrons (MLP), then decodes the resulting latent-space vector to obtain the
predicted image Ik+1. In addition, similar to [8,7,21], skip connections between
matching dimensions of the convolutional autoencoder are added to preserve
high-frequency features that are lost during convolution. This architecture is
shown in Fig.5, and we will label it DVF-Original. The network is trained with
23, 000 pairs of (Ik, u, Ik+1).

Although majority of similar architectures append the action with the latent-
space states and compute the dynamics, we wanted to make a fair compari-
son with the linear model which utilizes affine transforms on the input image,
such that the network is also learning image-to-image translation instead of
image×action-to-image. Thus, we utilize the same method illustrated in Fig.4,
and use 5 separate networks for different push lengths, similar to the mixture-of-
experts approach. The action-appending part of the network is removed in order
to facilitate an image-to-image architecture. We call this method DVF-Affine.

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 9

Fig. 5. Left: deep-learning Architecture for the DVF-Original Model. Right: Learned
distribution of the object-centric model.

Let the forward predicting function be Îk+1 = f̄(Ik, u). Each network is
trained end-to-end in a supervised manner using the true outcome image, and
the loss function is defined as:

L(̂Ik+1, Ik+1) = ‖Îk+1 − Ik+1‖F = ‖f̄(Ik, u)− Ik+1‖F . (12)

The samples that were used for training the linear model is used to train each
network in DVF-Affine. The training was done using the ADAM optimizer [13],
and each network went through more than 1000 epochs. The first 500 epochs are
trained with a step learning rate scheduler, starting with η = 0.01 and decreasing
by a factor of 10 every 100 epochs (γ = 0.1). This process is repeated again for
another 500 epochs, resuming from the result of the first 500 epochs.

3.3 Object-Centric Transport Model

Although the true states of the objects are unobservable, we attempt to build a
first-principles model by treating each non-zero pixel in the image as an object.
We assume that pixels that are within the swept area of the push are teleported
by a probability distribution around the pusher. The algorithm works as follows:

1. From image Ik, collect the coordinates of the non-zero pixels as a set Xk

2. Divide Xk into Xa (affected) and Xu (unaffected) depending on whether or
not the pixel coordinate is within the push rectangle.

3. From a bivariate distribution P (u), sample |Xa| coordinates pi ∼ P , and
denote the new set of sampled coordinates as Xn.

4. Create a new set Xk+1 = Xn ∪ Xu

5. Evaluate the particle Lyapunov function in (3) directly.

We approximate the distribution P (u) by a small uniform distribution right
in front of the push rectangle. To justify this choice, we transform each image
using the affine transformation from Fig. 4, evaluate the difference between the
image (Ik+1 − Ik), then threshold the difference above zero. This distribution is
illustrated in the right side of Fig. 5, and we can see that the uniform distribution
approximates this distribution well.

10 H.J. Terry Suh and Russ Tedrake

Fig. 6. The left two images visualize the simulator environment at time k, and the
downsampled image Ik that acts as input to the prediction algorithm. The right two
images corresponds to time Ik+1 after the push.

4 Simulation Results

To learn prediction models and test the closed-loop performance, we built a
simulator using Pymunk. Each carrot piece is randomly generated by sampling
points along a fixed-size circle and computing their convex hull. The simulator
is displayed in Fig. 6.

4.1 Switched-Linear Model

Least-Squares Comparison Results. We compare different methods for
least-squares from Sec. 3.1. Around 1000 pairs of images (Ik, Ik+1) are collected,
where each image is 32×32. 800 pairs are used to estimate the optimal value of A
using the CVXOPT solver [2], while 200 pairs are used as test set. This result is
shown in Fig. 7, and the non-negative least-squares formulation worked best for
the estimation of the linear map. On the other hand, the row sum-constrained
least-squares solution seem to regularize the transition matrix excessively, as the
sum of all kernels are forced to be equal to 1. Therefore, we adopt non-negative
least squares as the default estimation scheme for the A matrix.

Learned Kernels of the Linear Model. Following our interpretation of the
A matrix as a tensor in Fig. 3, we visualize each of the kernels to see if the kernel
images are interpretable. The result of this visualization is shown in Fig. 8

We see that for the areas outside the push rectangle, the kernel learns the
identity transform. For areas inside the push rectangle, the kernel values are

Fig. 7. Test error on different least-squares algorithms

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 11

Fig. 8. Visualization of different kernels for different pixel locations. The red pixel
represents the location of the pixel of the kernel, and the green rectangle represents
the pushed area. The right image represents the “step response” of the matrix.

almost zero, as it learns that pixels will be gone from this location. Finally, for
pixels that are at the edge of the push rectangle, it learns a kernel to weight the
values inside the pushed area and sum them up to place them in front of the
pushed area.

In addition, we initialize yk to all 0.5 (half of maximum value), and see the
step response of yk+1 = Ayk to see the behavior of the A matrix. The result is
displayed in the right side of Fig. 8, and we see that the transition matrix learns
the correct behavior of the action u. It is surprising to see the similarity between
this step response and the probability distribution obtained in the transport
model (Fig. 5), given that the linear model is obtained entirely from data while
the transport model is relatively hand-written.

4.2 Comparison of Visual Prediction

We compare the results of visual prediction using the three models. For fairness,
all models utilize a 32×32 resolution image. The predictions are visualized in Fig.
9. We observe that both the linear model and deep models predict a reasonable
result of the push. The Object-Centric model is visualized with locations of
particles as it does not synthesize future image frames.

Fig. 9. Visual comparison of Model Prediction Results.

12 H.J. Terry Suh and Russ Tedrake

In order to quantify performance, we set up 1000 test examples generated
from different initial conditions and actions. We take ‖Ik+1 − f(Ik, u)‖F as the
error metric, and average the error across all 1000 samples. This test error is
illustrated in Table. 1. Although the deep models were trained for over 1000
epochs, the linear model has the lowest prediction error. Given that the linear
model is a subclass of the deep model and has less parameters compared to the
deep model, the fact that it performs better is surprising.

We believe this is an empirical evidence for some underlying linearity in
the problem, and thus the linear model has better inductive bias. Furthermore,
choosing a linear model allowed us to train the model (9) to global optimality,
and add meaningful regularization constraints such as non-negativity.

Table 1. Test Prediction Error, Model Details, and Evaluation Time

Model Name Dimension Parameters Samples Test Error

Switched-Linear RN×N → RN×N 1,048,576 5,000 1.858
DVF-Original RN×N × R4 → RN×N 2,382,721 23,000 2.062
DVF-Affine RN×N → RN×N 2,317,185 5,000 2.537

4.3 Closed-Loop Performance

We compare the performance of the models in closed-loop by evaluating the best
action on a fixed grid of u according to (6). The goal of the task is to push all
the pieces into the blue region and drive the Lyapunov value V to 0. Some image
trajectories are visualized in Fig. 10, and the result is plotted in Fig. 11.

We observed that while the linear model, the object-centric transport model,
and DVF-Affine model are able to converge to the target set, DVF-Original failed
to do so. A common failure mode in the DVF-Original model is that its optimal
predicted action does not cause any change in the actual scene, and the same

Fig. 10. Visualization of the closed-loop behavior using three predicted models. The
blue square region denotes the target set.

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 13

Fig. 11. Evaluation of descent along the Lyapunov function for different methods. The
goal of the task is to make V = 0. Each method was repeated for 10 times on different
initial conditions.

image gets feedbacked, making the closed-loop system get stuck in a loop. This
failure mode agrees with the observation in [25], where policies trained in the
latent-space of spatial autoencoders [9] repeatedly produced actions that did not
change the scene. We observed these failure cases and found that deep networks
mispredict some key physical behavior that is apparent in object pushing, such
as making carrots disappear instead of pushing them.

There was no significant performance difference between the remaining three
models with small number of carrots. However, for larger number of carrot pieces,
the linear model started showing a steeper descent curve compared to the DVF-
Affine and object-centric models, with DVF-Affine usually requiring 2 more it-
erations before convergence. On average, the switched-linear model took 1.00
second of computation, objected-oriented took 27.00s, and DVF-affine model
took 4.00s on the CPU, while the DVF-original took 0.17s on GPU.

We attempt more difficult target sets to showcase the ability of the linear
model, as shown in Fig. 12. Although it takes more iterations, the prediction of
the linear model is successful in converging to a complex non-convex target set
when coupled with the controller.

Fig. 12. Evaluation of linear model on more difficult target sets. The last images are
in original simulator resolution.

14 H.J. Terry Suh and Russ Tedrake

Fig. 13. Left: Experiment of the setup. Right: Visualization of the closed-loop behavior
of the linear model.

5 Experiment Results

To test our algorithm in the real-world, we prepare an experiment setup illus-
trated in Fig. 13. The initial piles are generated by manually spraying the carrot
pieces on the board, and the result is averaged over multiple runs. We use the
dynamics obtained in simulation directly on the experiment without additional
fine-tuning, as we believe this sim-to-real transfer process will be a good measure
of the model’s ability to generalize.

From the result plot of Fig. 14, we see that the linear model and the object-
centric model was still able to converge to the target set. But surprisingly, the
DVF-Affine model did not succeed in the real-world task, despite its success in
simulation. This suggests that the DVF-Affine model overfitted to the training
images provided by the simulator, while the switched-linear model learned a
generalizable model that can extend to new environments.

What could have allowed the linear model to generalize to the real environ-
ment while the DVF-Affine model did not? Given that they are trained with the
sample training samples, we believe that the linear model provided better induc-
tive bias for the phenomenon, which empirically signifies an inherent linearity in
the problem.

Fig. 14. Result of the experiments. Each method was repeated 5 times.

Effectiveness of Linear Models for Visual Foresight in Pile Manipulation 15

6 Conclusion

In this work, we have proposed a switched-linear model that utilizes action-
dependent linear maps to predict image dynamics. We compared the perfor-
mance of our model with deep-learning-based models which estimate the dy-
namics on the latent space of images. We found that that the linear model
outperformed the deep model in test prediction error, closed-loop performance,
and generalization. Furthermore, through comparing the linear model’s perfor-
mance with the object-centric model, we found that output feedback offers a
competitive alternative to our object-centric first-principles approach.

As linear models are a subclass of deep models, we believe that given enough
training samples, the right architecture, and good hyperparameters, there exists
a deep model that will outperform the linear model. However, the search proce-
dure for such models is not understood well. On the other hand, linear models
allow globally optimal learning in their parameter space, and can easily be reg-
ularized through constraints. Furthermore, this relatively simple task serves to
illustrate that high-dimensional visual dynamics, that may not seem linear at
first glance, show promise to be approximated well by tractable linear models.

We wish to better investigate where this linearity comes from, and how gen-
eral this approach will be for manipulation tasks such as pushing rigid bodies,
tasks in 3D, and tasks that require utilizing the color-space. We aim to under-
stand what model classes are most useful for vision-based feedback in manipu-
lation, considering both the quality of visual prediction, as well as compatibility
with rigorous methods for system identification, control design, and analysis.

References

1. Agrawal, P., Nair, A., Abbeel, P., Malik, J., Levine, S.: Learning to poke by poking:
Experiential learning of intuitive physics. CoRR abs/1606.07419 (2016)

2. Andersen, M., Dahl, J., Vandenberghe, L.: Cvxopt: A python package for convex
optimization, version 1.1.6 (2013)

3. Barrow, H.G., Tenenbaum, J.M., Bolles, R.C., Wolf, H.C.: Parametric correspon-
dence and chamfer matching: Two new techniques for image matching. In: Proceed-
ings of the 5th International Joint Conference on Artificial Intelligence - Volume
2, Morgan Kaufmann Publishers Inc. (1977) 659663

4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1) (January 2011) 1122

5. Colaneri, P.: Analysis and control of linear switched systems. Politecnico di Milano
(2015)

6. Elliott, S., Cakmak, M.: Robotic cleaning through dirt rearrangement plan-
ning with learned transition models. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). (2018) 1623–1630

7. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction
through video prediction. In: Proceedings of the 30th International Conference on
Neural Information Processing Systems, Red Hook, NY, USA (2016) 6472

8. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. CoRR
abs/1610.00696 (2016)

16 H.J. Terry Suh and Russ Tedrake

9. Finn, C., Tan, X.Y., Duan, Y., Darrell, T., Levine, S., Abbeel, P.: Learning visual
feature spaces for robotic manipulation with deep spatial autoencoders. CoRR
abs/1509.06113 (2015)

10. Fragkiadaki, K., Agrawal, P., Levine, S., Malik, J.: Learning visual predictive
models of physics for playing billiards. CoRR abs/1511.07404 (2015)

11. Gagniuc, P.: Markov Chains: From Theory to Implementation and Experimenta-
tion. Wiley (2017)

12. Hu, Y., Anderson, L., Li, T., Q, S., Carr, N., Ragan-Kelley, J., Durand, F.: Diff-
taichi: Differentiable programming for physical simulation. CoRR abs/1412.6980
(2014)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014)

14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. Commun. ACM 60(6) (May 2017) 8490

15. Lasserre, J.B., Henrion, D., Prieur, C., Trlat, E.: Nonlinear Optimal Control via
Occupation Measures and LMI-Relaxations. SIAM Journal on Control and Opti-
mization 47(4) (January 2008) 1643–1666

16. Ma, D., Rodriguez, A.: Friction variability in planar pushing data: Anisotropic
friction and data-collection bias. IEEE Robotics and Automation Letters 3(4)
(Oct 2018) 3232–3239

17. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-
encoders for hierarchical feature extraction. In Honkela, T., Duch, W., Girolami,
M., Kaski, S., eds.: Artificial Neural Networks and Machine Learning, Berlin, Hei-
delberg, Springer Berlin Heidelberg (2011) 52–59

18. Mason, M.T.: Mechanics and planning of manipulator pushing operations. The
International Journal of Robotics Research 5(3) (1986) 53–71

19. Minderer, M., Sun, C., Villegas, R., Cole, F., Murphy, K., Lee, H.: Unsupervised
learning of object structure and dynamics from videos. CoRR (2019)

20. Qin, Z., Fang, K., Zhu, Y., Li, F.F., Savarese, S.: Keto: Learning keypoint repre-
sentations for tool manipulation. ArXiv abs/1910.11977 (2019)

21. Sarkar, M., Pradhan, P., Ghose, D.: Planning robot motion using deep visual
prediction. CoRR abs/1906.10182 (2019)

22. Umenberger, J., Manchester, I.R.: Scalable identification of stable positive systems.
In: IEEE 55th Conference on Decision and Control (CDC). (Dec 2016) 4630–4635

23. Watters, N., Tacchetti, A., Weber, T., Pascanu, R., Battaglia, P.W., Zoran, D.:
Visual interaction networks. CoRR abs/1706.01433 (2017)

24. Williams, M.O., Kevrekidis, I.G., Rowley, C.W.: A DataDriven Approximation
of the Koopman Operator: Extending Dynamic Mode Decomposition. Journal of
Nonlinear Science 25(6) (December 2015) 1307–1346

25. Wilson, M., Hermans, T.: Learning to manipulate object collections using grounded
state representations. Conference on Robot Learning (2019)

26. Ye, Y., Gandhi, D., Gupta, A., Tulsiani, S.: Object-centric forward modeling for
model predictive control. ArXiv abs/1910.03568 (2019)

27. Yong Yu, Fukuda, K., Tsujio, S.: Estimation of mass and center of mass of graspless
and shape-unknown object. In: IEEE International Conference on Robotics and
Automation. Volume 4. (May 1999) 2893–2898 vol.4

28. Zeng, A., Song, S., Welker, S., Lee, J., Rodriguez, A., Funkhouser, T.A.: Learning
synergies between pushing and grasping with self-supervised deep reinforcement
learning. CoRR abs/1803.09956 (2018)

	The Surprising Effectiveness of Linear Models for Visual Foresight in Object Pile Manipulation

