THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Approximation Algorithms for Multi-Robot Patrol-Scheduling
with Min-Max Latency

Citation for published version:

Afshani, P, de Berg, M, Buchin, K, Gao, J, Léffler, M, Nayyeri, A, Raichel, B, Sarkar, R, Wang, H & Yang, H-
T 2021, Approximation Algorithms for Multi-Robot Patrol-Scheduling with Min-Max Latency. in SM LaValle,
M Lin, T Ojala, D Shell & J Yu (eds), Algorithmic Foundations of Robotics XIV. Springer Proceedings in
Advanced Robotics, vol. 17, Springer, Cham, pp. 107 - 123, 14th International Workshop on the Algorithmic
Foundations of Robotics, Oulu, Finland, 21/06/20. https://doi.org/10.1007/978-3-030-66723-8_7

Digital Object Identifier (DOI):
10.1007/978-3-030-66723-8_7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Algorithmic Foundations of Robotics XIV

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN () ACCESS

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-030-66723-8_7
https://doi.org/10.1007/978-3-030-66723-8_7
https://www.research.ed.ac.uk/en/publications/50637c65-a702-42f8-8ed2-267f73a6d28d

Approximation Algorithms for Multi-Robot
Patrol-Scheduling with Min-Max Latency

Peyman Afshani', Mark de Berg?, Kevin Buchin?, Jie Gao®, Maarten LofHer?,
Amir Nayyeri®, Benjamin Raichel®, Rik Sarkar”, Haotian Wang®, and
Hao-Tsung Yang®

! Department of Computer Science, Aarhus University, Denmark peyman@cs.au.dk
2 Department of Mathematics and Computer Science, TU Eindhoven, the Netherlands
{M.T.d.Berg, k.a.buchin}@tue.nl
3 Department of Computer Science; Rutgers University; New Brunswick, NJ 08901,
USA jg1555@rutgers.edu
4 Department of Information and Computing Sciences, Utrecht University, the
Netherlands m.loffler@uu.nl
5 School of Electrical Engineering and Computer Science, Oregon State University, OR
97330, USA nayyeria@eecs.oregonstate.edu
5 Department of Computer Science; University of Texas at Dallas; Richardson, TX
75080, USA benjamin.raichel@utdallas.edu
7 School of Informatics, University of Edinburgh, Edinburgh, U.K.
rsarkar@Qinf.ed.ac.uk
8 Department of Computer Science; Stony Brook University; Stony Brook, NY 11720,
USA {haotwang, haotyang}@cs.stonybrook.edu

Abstract. We consider the problem of finding patrol schedules for &
robots to visit a given set of n sites in a metric space. Each robot has the
same maximum speed and the goal is to minimize the weighted maximum
latency of any site, where the latency of a site is defined as the maximum
time duration between consecutive visits of that site. The problem is
NP-hard, as it has the traveling salesman problem as a special case (when
k =1 and all sites have the same weight). We present a polynomial-time
algorithm with an approximation factor of O(k? log %) to the optimal
solution, where wmax and wmin are the maximum and minimum weight
of the sites respectively. Further, we consider the special case where
the sites are in 1D. When all sites have the same weight, we present a
polynomial-time algorithm to solve the problem exactly. If the sites may
have different weights, we present a 12-approximate solution, which runs
in polynomial time when the number of robots, k, is a constant.

Keywords: Approximation, Motion Planning, Scheduling

1 Introduction

Monitoring a given set of locations over a long period of time has many applica-
tions, ranging from infrastructure inspection and data collection to surveillance

2 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

for public or private safety. Technological advances have opened up the possibility
to perform these tasks using autonomous robots. To deploy the robots in the most
efficient manner is not easy, however, and gives rise to interesting algorithmic
challenges. This is especially true when multiple robots work together in a team
to perform the task.

We study the problem of finding a patrol schedule for a collection of k robots
that together monitor a given set of n sites in a metric space, where k is a fixed
parameter. Each robot has the same maximum speed—from now on assumed to
be unit speed—and each site has a weight. The goal is to minimize the maximum
weighted latency of any site. Here the latency of a site is defined as the maximum
time duration between consecutive visits of that site (multiplied by its weight).
A patrol schedule specifies for each robot its starting position and an infinitely
long schedule describes how the robot moves over time from site to site.

Related Work. If £ = 1 and all sites have the same weight, the problem reduces
to the Traveling Salesman Problem (TSP) because then the optimal patrol
schedule is to have the robot repeatedly traverse an optimal TSP tour. Since TSP
is NP-hard even in Euclidean space [25], this means our problem is NP-hard for
sites in FEuclidean space as well. There are efficient approximation algorithms for
TSP, namely, a (3/2)-approximation for metric TSP [9] and a polynomial-time
approximation scheme (PTAS) for Euclidean TSP |5, 24|, which carry over to the
patrolling problem for the case where k = 1 and all sites are of the same weight.

Alamdari et al. [3] considered the problem with one robot (i.e., k = 1) and
sites of possibly different weights. It can then be profitable to deviate from
a TSP tour by visiting heavy-weight sites more often than low-weight sites.
Alamdari et al. provided algorithms for general graphs with either O(logn) or
O(log o) approximation ratio, where n is the number of sites and g is the ratio of
the maximum and the minimum weight.

For k£ > 1 and even for sites of uniform weights, the problem is significantly
harder than for a single robot, since it requires careful coordination of the
schedules of the individual robots. The problem for k£ > 1 has been studied in
the robotics literature under various names, including continuous sweep coverage,
patrolling, persistent surveillance, and persistent monitoring [15, 18, 31, 23, 27,
28]. The dual problem has been studied by Asghar et al. [6] and Drucker et
al. [12], where each site has a latency constraint and the objective is to minimize
the number of robots to satisfy the constraint among all sites. They provide a
O(log p)-approximation algorithm where p is the ratio of the maximum and the
minimum latency constraints. When the objective is to minimize the latency,
despite all the works for practical settings, we are not aware of any papers that
provide worst-case analysis. There are, however, several closely related problems
that have been studied from a theoretical perspective.

The general family of vehicle routing problems (VRP) [11] asks for k tours, for
a given k, that start from a given depot O such that all customers’ requirements
and operational constraints are satisfied and the global transportation cost is
minimized. There are many different formulations of the problem, such as time
window constraints in pickup and delivery, variation in travel time and vehicle

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 3

load, or penalties for low quality services; see the monographs by Golden et
al. [17] or Toth and Vigo [29] for surveys.

In particular, the k-path cover problem aims to find a collection of k paths
that cover the vertex set of the given graph such that the maximum length of
the paths is minimized. It has a 4-approximation algorithm [4]. The min-max
tree cover problem is to cover all the sites with k trees such that the maximum
length of the trees is minimized. Arkin et al. [4] proposed a 4-approximation
algorithm for this problem, which was improved to a 3-approximation by Kahni
and Salavatipour [22] and to a (8/3)-approximation by Xu et al. [30]. The k-
cycle cover problem asks for k cycles (instead of paths or trees) to cover all
sites. For minimizing the maximum cycle length, there is an algorithm with an
approximation factor of 16/3 [30]. For minimizing the sum of all cycle lengths,
there is a 2-approximation for the metric setting and a PTAS in the Euclidean
setting [20, 21]. Note that all problems above ask for tours visiting each site once
(or at most once), while our patrolling problem asks for schedules where each
site is visited infinitely often.

When the patrol tours are given (and the robots may have different speeds),
the scheduling problem is termed the Fence Patrolling Problem introduced by
Czyzowicz et al. [10]. Given a closed or open fence (a rectifiable Jordan curve) of
length ¢ and k robots of maximum speed v, va, ..., v > 0 respectively, the goal is
to find a patrolling schedule that minimizes the maximum latency L of any point
on the fence. Notice that our problem focuses on a discrete set of n sites while
the fence patrolling problem focuses on visiting all points on a continuous curve.
For an open fence (a line segment), a simple partition strategy is proposed, in
which each robot moves back and forth in a segment whose length is proportional
to its speed. The best solution using this strategy gives the optimal latency if
all robots have the same speed and a 2-approximation of the optimal latency
when robots have different maximum speeds. Later, the approximation ratio was
improved to % by Dumitrescu et al. [13] allowing the robots to stop. Finally,
this ratio is improved to % by Kawamura and Soejima [19] and the speeds of
robots are varied in the patrolling process.

D]
A i
-« - - Lo E !
A\ i"2+ i E
€ @71 $ ' '
v v !
H v

[>

Fig. 1. Left: Two robots with n sites evenly placed on a unit circle. The optimal solution
is to place two robots, maximum apart from each other, along the perimeter of a regular
n-gon. Middle: Two robots with two clusters of vertices of distance 1 apart. The optimal
solution is to have two robots each visiting a separate cluster. Right: A non-periodic
optimal solution.

4 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

Challenges. For scheduling multiple robots, a number of new challenges arise.
One is that already for £ = 2 and all sites of weight 1 the optimal schedules may
have very different structures. For example, if the sites form a regular n-gon for
sufficiently large n, as in Figure 1 (left), an optimal solution would place the two
robots at opposite points on the n-gon and let them traverse the n-gon at unit
speed in the same direction. If there are two groups of sites that are far away
from each other, as in Figure 1 (middle), it is better to assign each robot to a
group and let it move along a TSP tour of that group. Figure 1 (middle) also
shows that having more robots will not always result in a lower maximum latency.
Indeed, adding a third robot in Figure 1 (middle) will not improve the result:
during any unit time interval, one of the two groups is served by at most one
robot, and then the maximum latency within that group equals the maximum
latency that can already be achieved by two robots for the whole problem. The
two strategies just mentioned—one cycle with all robots evenly placed on it, or a
partitioning of the sites into k cycles, one cycle per robot exclusively—have been
widely adopted in many practical settings [14,26]. Chevaleyre [8] studied the
performance of the two strategies but did not provide a bounded approximation
ratio.

Note that the optimal solutions are not limited to the two strategies mentioned
above. For example, for three robots it might be best to partition the sites into
two groups and assign two robots to one group and one robot to the other
group. There may even be completely unstructured solutions, that are not even
periodic. See Figure 1 (right) for an example. There are four sites at the vertices
of a square with two robots that initially stay on two opposite corners. r; will
choose randomly between the horizontal or vertical direction. Correspondingly,
robot r, always moves in the opposite direction of 1. In this way, all sites have
maximum latency 2 which is optimal. This solution is not described by cycles
for the robots, and is not even periodic. Observe that for a single robot, slowing
down or temporarily stopping never helps to reduce latency. But for multiple
robots, it is not easy to argue that there is an optimal solution in which robots
never slow down or stop.

When sites have different weights, intuitively the robots have to visit sites with
high weights more frequently than others. Thus, coordination among multiple
robots becomes even more complex.

Our results We present a number of exact and approximation algorithms which
all run in polynomial time. In Section 3 we consider the weighted version in the
general metric setting and presented an algorithm with approximation factor of
O(kz2 log %), where wWpax and wpyi, are the maximum weight and minimum
weight respectively. The main insight is to obtain a good assignment of the sites
to the k robots. We first round up all the weights to powers of two, which only
introduces a performance loss by a factor of two. The number of different weights
is in the order of O(log %) Given a target maximum weighted latency L, we
obtain the t-min-max tree cover for each set of sites of the same weight w, for the
smallest possible value ¢t < k such that the max tree weight in the tree cover is
no greater than O(L/w). Then we assign the sites to the k robots sequentially by

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 5

decreasing weights. Each robot is assigned a depot tree with one of the vertices
as the depot vertex. The subset of vertices of a new tree are allocated to existing
depots/robots if they are sufficiently nearby; and if otherwise, allocated to a ‘free’
robot. We show that if we fail in any of the operations above (e.g., trees in a
k-min-max tree cover are too large or we run out of free robots), L is too small.
We double L and try again. We prove that the algorithm succeeds as soon as
L > L*, where L* is the optimal weighted latency. At that point we can start to
design the patrol schedules for the k robots, by using the algorithm in [3].

In Section 4 we consider the special case where all the sites are points in R!.
When the sites have uniform weights, there is always an optimal solution consisting
of k disjoint zigzag schedules (a zigzag schedule is a schedule where a robot travels
back and forth along a single fixed interval in R'), one per robot. Such an optimal
solution can be computed in polynomial time by dynamic programming.

When these sites are assigned different weights and the goal is to minimize the
maximum weighted latency, we show that there may not be an optimal solution
that consists of only disjoint zigzags. Cooperation between robots becomes
important. In order to get an approximate solution, we run a series of relaxations
to our problem and turn it into the Dyadic Time Window Problem (DTW) and
Dyadic Time Window Tour Problem (DTT), the solution to which are constant
approximations to our patrol problem. Again we round the weights to powers of
two. Different from the patrol problem, in the time-window problems, we chop
the time axis into time windows of length inversely proportional to the weight
of a site — the higher the weight, the smaller its window size — and require each
site to be visited within its respective time windows. Since the window sizes
are powers of two, these are called dyadic windows. By the fact that the sites
stay in 1D, we can represent the motion plan for each robot within a proper
time window by four parameters: the starting position, the ending position, the
leftmost position and the rightmost position. This is enough to conclude which
site has been visited within the time window. The fact that the sub-schedules
can be represented by a small number of parameters allows us to find a schedule
for k robots with a 12-approximation solution of the min-max weighted latency
in R'. The running time is O((n/wmyin)°*), where the maximum weight is 1
and the minimum weight is wpin.

2 Problem Definition

As stated in the introduction, our goal is to design a schedule for a set of k robots
visiting a set of n sites in such a way that the maximum weighted latency at
any of the sites is minimized. It is most intuitive to consider the sites as points
in Euclidean space, and the robots as points moving in that space. However,
our solutions will actually work in a more general metric space, as defined next.
Let (P,d) be a metric space on a set P of n sites, where the distance between
two sites s;,s; € P is denoted by d(s;, sj). Consider the undirected complete
graph G = (P, P x P). We view each edge (s;,s;) € P X P as an interval of
length d(s;, s;)—so each edge becomes a continuous 1-dimensional space in which

6 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

the robot can travel—and we define C(P,d) as the continuous metric space
obtained in this manner. From now on, and with a slight abuse of terminology,
when we talk about the metric space (P, d) we refer to the continuous metric
space C(P,d).

Let R := {ry,...,rx} be a collection of robots moving in a continuous
metric space C(P,d). We assume without loss of generality that the maximum
speed of the robots is 1. A schedule for a robot 7; is a continuous function
f; : R2% — C(P,d), where f;(t) specifies the position of r; at time ¢. A schedule
must obey the speed constraint, that is, we require d(f;(t1), f;(t2)) < |[t1 —to| for
all t1,t2. A schedule for the collection R of robots, denoted o(R), is a collection
of schedules f;, one for each robot in r; € R. (We allow robots to be at the same
location at the same time.) We call the schedule of a robot r; periodic if there
exists an offset ¢7 > 0 and period length 7; > 0 such that for any integer ¢ > 0
and any 0 <t < 7; we have f;(t; +im; +t) = f;(t; + (i + 1)7; + t). A schedule
o(R) is periodic if there are ¢5 > 0 and 7z > 0 such that for any integer i > 0
and any 0 < t < 7g we have f;(t}, +itgp +1t) = f;(th + (¢ + 1)7r + t) for all
robots r; € R. It is not hard to see that in the case that all period lengths are
rational, o(R) is periodic if and only if the schedules of all robots are periodic.

We say that a site s; € P is visited at time ¢t if f;(t) = s; for some robot r;.
Given a schedule o(R), the latency L; of a site s; is the maximum time duration
during which s; is not visited by any robot. More formally,

L; = sup {|ta —t1]: s; is not visited during the time interval (¢1,t2)}
0<t1 <t

We only consider schedules where the latency of each site is finite. Clearly such
schedules exists: if T, denotes the length of an optimal TSP tour for the given
set of sites, then we can always get a schedule where L; = T, /k by letting
the robots traverse the tour at unit speed at equal distance from each other.
Given a metric space (P,d) and a collection R of k robots, the (multi-robot)
patrol-scheduling problem is to find a schedule o(R) minimizing the weighted
latency L := max; w; L;, where site i has weight w; and maximum latency L;.

Note that it never helps to move at less than the maximum speed between
sites—a robot may just as well move at maximum speed and then wait for some
time at the next site. Similarly, it does not help to have a robot start at time
t = 0 “in the middle” of an edge. Hence, we assume without loss of generality
that each robot starts at a site and that at any time each robot is either moving
at maximum speed between two sites or it is waiting at a site.

3 Approximation Algorithms in a General Metric

For sites with weights in a general metric space (P, d), we design an algorithm
with approximation factor O(k?m) for minimizing the max weighted latency
of all sites by using k robots of maximum speed of 1, where m = log 7max.

Without loss of generality, we assume that the maximum weight among sites
is 1. We first round the weight of each site to the least dyadic value and solve

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 7

the problem with dyadic weights. That is, if node ¢ has weight w;, we take
w; = sup{2®|zr € Z and 2* > w;}. Clearly, w; < w} < 2w;. This will only
introduce another factor of 2 in the approximation factor on the maximum
weighted latency. In the following we just assume the weights are dyadic values.
Suppose the smallest weight of all sites is 1/2. Denote by W; the collection of
sites of weight 1/27. W; could be empty. Let W denote the collection of all non-
empty sets W;, 0 < j < m. Note that |[W| <m 4 1 = log 7= + 1. We assume
we have a [-approximation algorithm A available for the min-max tree cover
problem. The currently best-known approximation algorithm has 8 = 8/3 [30].

The intuition of our algorithm is as follows. We first guess an upper bound L
on the optimal maximum weighted latency and run our algorithm with parameter
L. If our algorithm successfully computes a schedule, its maximum weighted
latency is no greater than Bk2mL. If our algorithm fails, we double the value of
L and run again. We prove that if our algorithm fails, the optimal maximum
weighted latency must be at least L. Thus, when we successfully find a schedule,
its maximum weighted latency is an O(k%*m) approximation to the optimal
solution. The following two procedures together provide what is needed.

— Algorithm k-ROBOT ASSIGNMENT(W, L), returns FALSE when there does
not exist a schedule with max weighted latency < L, or, returns k£ groups:
T(r1),T(re), - T(rk), where T (r;) includes a set of trees that are assigned
to robot r;. Every site belongs to one of the trees and no site belongs to two
trees in the union of the groups. For robot r;, one of the trees in 7 (r;) is
called a depot tree Tyep(7;) and one vertex with the highest weight on the
depot tree is a depot for r;, denoted by Tgep(r;)-

— With the trees T (r;) assigned to one robot r;, Algorithm SINGLE ROBOT
SCHEDULE(T (r;)) returns a single-robot schedule such that every site covered
by 7 (r;) has maximum weighted latency O(k?m - L).

Denote by V(T') the set of vertices of a tree T" and by d(s;,s;) the distance
between two sites s; and s;. See the pseudo code of the two algorithms.

The following observation is useful for our analysis later.

Lemma 1. In k-ROBOT ASSIGNMENT (W, L), the depots s; and s;, with w; > wj,
for different robots have distance more than kL /w;.

Proof. The depot vertices, in the order of their creation, have non-increasing
weight. Thus, we could assume without loss of generality that s; is the depot
that is created later than s;. s; is more than kL/w; away from the depot s;. O

Lemma 2. Let sg,---,8k be k+ 1 depot sites, ordered such that wg > -+ > wy,
defined as in Algorithm k-ROBOT ASSIGNMENT (W, L). The optimal schedule
minimizing the maximum weighted latency for k robots to serve {sg, - , sk} has

weighted latency L* > 2L.

8 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

1: procedure k-ROBOT ASSIGNMENT(W, L)
2 for every set W; e W
3 fort+ 1tok _
4 Run algorithm A to obtain a ¢-min-max tree cover C; on Wj.
5: g;j < smallest integer ¢ s.t. the max weight of trees in Cg is<B-2L
6 If there is no such ¢; then return FALSE
7 T(Wj) — Cgl
8 Set all robots as “free” robots, i.e., not assigned a depot tree.
9: for j < 0tom > Assign trees to robots
10: for every tree T in T (W;)
11: Q<+ V(T)
12: for every non-free robot r
13: Let 5’ be such that zqep(r) € W/
14: Q'+ {vv € Q,d(v, Taep(r)) < k27" L}
15: Compute MST(Q') and assign it to robot r.
16: Q+—Q\Q
17: if Q#0
18: if no free robot
19: Return FALSE.
20: else
21: Pick a free robot r and set Tgep(r) — MST(Q)
22: Pick an arbitrary vertex = in Tyep(r) and set Zqep(r) <—
23: For each robot r;, let T(r;) be the collection of trees assigned to r;,
including its depot tree, and return the collections 7 (r1),..., T (%).

Proof. Let speed(r,t) denote the speed of a robot r at time ¢. Let .S be a schedule
of latency L*. The proof proceeds in k rounds. The goal of the p-th round is to
change the schedule into a new schedule that has a stationary robot at site s,_;.
To keep the latency at L*, we will increase the speed of some other robots. We
will show the following claim.

Claim. After the p-th round we have a schedule of latency L* such that

1. there is a stationary robot at each of the sites s; with i < p,

2. at any time ¢ we have) speed(r,t) < k, where the sum is overall k
robots.

This claim implies that after the (k — 1)-th round we have a schedule of latency
L* with stationary robots at sqg, s1,- - , Sk—2, and one robot of maximum speed k
serving the sites sy_1 and si. The distance between these sites is at least kL /wg—_1,
so the latency L* of our modified schedule satisfies L* > 2kL/k = 2L. This is
what is needed in the Lemma.

The proof of the claim is by induction. Suppose the claim holds after the
(p—1)-th round. Thus we have a stationary robot at each of the sites sg, - - , sp—2,
and at any time ¢ we have) speed(r,t) < k. Note that for p = 1, the required
conditions are indeed satisfied. Now consider the site s,_;.

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 9

Define £y, ¢1,--- to be the moments in time where there is at least one robot
at sp,—1 and all robots present at s,_; are leaving. In other words, £y, ¢;,--- are
the times at which s,_; is about to become unoccupied. If no such time exists
then there is always a robot at s,_1, and so we are done. Let ay,az,--- be the
moments in time where a robot arrives at s,_; while no other robot was present
at sp—1 just before that time, that is, s,_; becomes occupied. Assuming without
loss of generality that ¢y < a1, we have

by <ay <l <---.

Consider an interval (¢;, a;4+1). By definition a;11 — ¢; < L*/wy,_1. Let 7 be a
robot leaving s,_1 at time ¢; and suppose r is at position z at time a;41. Let
r’ be a robot arriving at s,_; at time a;. We modify the schedule such that r
stays stationary at s,_i, while 1’ travels to z via s,_1. We increase the speed
of ' by adding the speed of r to it, that is, for any ¢ € (¢;,a;+1) we change the
speed of 1’ at time t to speed(r’,t) + speed(r,t). Since r is now stationary at
Sp—1, this does not increase the sum of the robot speeds. Moreover, with this
new speed, v’ will reach z at time a;,1. Finally, observe that this modification

does not increase the latency. Indeed, the sites sg,--- ,s,_2 have a stationary
robot by the induction hypothesis, and all sites s,,- - - , s, are at distance at least
kL/w,_1 from s,_q so during (¢;, a;+1) the robots r and r’ did not visit any of
these sites in the unmodified schedule. ad

Lemma 3. Given L, if k-ROBOT SCHEDULE(W, L) returns FALSE then L* > L,
where L* is the optimal maximum weighted latency.

Proof. There are two cases of the algorithm returning FALSE. We discuss them
separately.

In the first case, there is a value j such that the maximum tree weight of
a B-approximation of the t-min-max tree cover is larger than 32/~ 'L for all
1 <t <k (Line 7). It implies that the optimal value A of k-min-max tree cover
is larger than 2/~1'L for sites in W;. Since the k-robot solution also cover all
the sites in W, A\/2771 is also a lower bound of the optimal latency (see [2] for
details). Thus, L* > \/2/71 > 2/-1[/2i=1 = L.

In the second case, there is a tree with vertices that are far away from existing
depots and there is no free robot anymore. Notice that there are precisely k
depots at this moment. Suppose the depots are sg, s1, - - - sp—1 and there is another
vertex s, which is at distance at least kL/w; from the depot s; of weight w;, for
0<i<k—1. Apply Lemma 2, the latency of the optimal schedule visiting only
these k sites is at least 2L, so is the optimal latency L*. a

Lemma 4. If k-ROBOT SCHEDULE(W, L) does not return FALSE, each robot is
assigned at most k(m + 1) trees and a depot site such that

— one of the trees is the depot tree Tyep which includes a depot Taep. Taep has
the highest weight among all sites assigned to this robot;

— all other vertices are within distance kL/® from the depot, where @ is the
weight of Tgep;

10 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

— each tree T has vertices of the same weight w and the sum of tree edge length
is at most BL/w.

Proof. Most of the claims are straight-forward from the algorithm k-ROBOT
SCHEDULE(W, L). A tree T assigned to a robot has vertices coming from the
vertices of the same tree 7" in the min-max tree cover (obtained on Line 4). Thus
the vertices have the same weight (say w). These vertices are within distance
kL/w, from the depot Zqep, where @ is the weight of zqep, by Line 15. Further,
the tree T' is always taken as a minimum spanning tree on its vertices. Thus the
sum of the edge length on T is no greater than that of the original tree 7" (with
potentially more vertices), which is no greater than SL/w, by Line 5.

It remains to prove that each robot r is assigned at most km trees. Note
that the loop of line 9 in the algorithm has m + 1 iterations and each loop of
line 10 has at most k iterations. Moreover, in one iteration of lines 13 to 23 each
robot r is assigned at most one tree: it may be assigned a tree in line 16 when it
is already non-free, and in line 22 when it was still free. Hence, r is assigned at
most k(m + 1) trees. O

Now we are ready to present the algorithm for finding the schedule for robot
r; to cover all vertices in the family of trees T (r;), as the output of k-ROBOT
SCHEDULE(W, L). We apply the algorithm in [16, 3] for the patrol problem with
one robot, with the only one difference of handling the sites of small weights. The
details are presented in the pseudo code SINGLE ROBOT SCHEDULE(T) which
takes a set T of h trees. By Lemma 4, there are at most km trees assigned to
one robot, i.e., h < km. For a tree T (a path P) we use |T| (resp. |P|) as the
sum of the length of edges in T (resp. P).

1: procedure SINGLE-ROBOT-SCHEDULE(T = {To, T4, - ,Th-1})
2 > Ty is the depot tree and wy is the weight of the vertices in Ty. h < km
3 0+ 2k:L/w0
4: fori<0toh—1
5: Compute a tour D; of length at most 2|T;| on the vertices in T;.
6 Partition D; into a collection P* = {P§, P},---} of at most
[2|T;| /] paths such that |Pj| < § for all j.
idx(7) «+ 0 > Pi’;ix(i) is the path in P’ to be traversed next

o

8: Put the robot on the first vertex of path P{ and set i < 0
9: while TRUE

10: Let the robot traverse path Piidx(i)

11: i« (i+1) modh /

12: Let the robot move from the end of Pildx(i) to the start of Pildx(i,)
13: Set idx(i) < (idx(¢) + 1) mod | P;| and set ¢ < i’

Lemma 5. The SINGLE ROBOT SCHEDULE (T = {To, T, -+ ,Th-1}), h < k(m+
1), returns a schedule for one robot that covers all sites included in T such that
the mazimum weighted latency of the schedule is at most O(k?m - L).

Proof. By Lemma 4 the distance between the depot and any other vertices on tree
T; is at most kL /wq, where wy is the weight of the depot. By triangle inequality,

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 11

the distance of any two sites (either on the same tree or on different trees) is at
most 2kL/wg = 0. Consider any site s and assume s € P]? for some Pj? € P". Let
w; be the weight of the vertices in T;. Note that some path from P is visited
once every h iterations of the while loop of line 9 to 13, and that the paths from
P* are visited in a round-robin fashion. Thus P} (and, hence, site s) is visited
once every h - | P'| iterations. In one iteration the robot moves over a distance
at most § in line 10, and over a distance at most ¢§ in line 12. Hence, the total
distance traveled by the robot before returning to s is bounded by h - | P*|- 26 ,
and so the total weighted latency is bounded by

wi-h- | P28 <w;-h-[2Ti|/6] - 26

There are two cases. If |T;| > 0, the above term is at most w; - |T3| - h < 2L - h. If
|T;| < 6, the above term is at most w; - h - 2§ < 2kL - h. Since h < k(m + 1), the
weighted latency of s is O(k*mL). 0

To analyze the running time, we use the best known t-min-max tree cover
algorithm [30] with running time O(n?t?logn + t°logn). In Algorithm k-ROBOT
ASSIGNMENT, from line 2 to line 8 it takes time in the order of O(mn?logn) -
(12 + 22 + .- k%) = O(mn*k3logn) (suppose n > k). From line 9 to line
24, we assign some subset of vertices @’ in each tree to occupied robots. The
running time is O(k(m+ 1) -nlogn), where O(nlogn) is the time to compute the
minimum spanning tree for @’ (line 16). The total running time is O(mn?logn)
for Algorithm k-ROBOT ASSIGNMENT. Algorithm SINGLE ROBOT SCHEDULE
takes O(n) time, since a robot is assigned at most n sites. Thus, given a value
L, it takes O(n?k®>mlogn) to either generate patrol schedules for k robots with
approximation factor O(k?m) or confirm that there is no schedule with maximum
weighted latency L.

To solve the optimization problem (i.e., finding the minimum L*) if there
are fewer than than k sites, we put one robot per site. Otherwise, we start with
parameter L taking the distance between the closest pair of the n sites, and
double L whenever the decision problem answers negatively. The number of
iterations is bounded by log L*. Notice that L* is bounded, e.g., at most 1/k-th
of the traveling salesman tour length.

Theorem 1. The approximation algorithm for k-robot patrol scheduling for
weighted sites in the general metric has running time O(n?k3mlognlog L*) with
a O(ka)—appmximation ratio, where m = log % with Wmax and wyin being
the mazimum and minimum weight of the sites and L* is the optimal maximum
weighted latency.

4 Sites in R?!

In this section we consider the case where the sites are points in R!. For the case
where the sites have uniform weights, we present an algorithm that computes an
optimal solution. For the case of arbitrary weights, we design a 12-approximation

12 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

algorithm. Before we do so, we give a simple observation about the case of a
single robot. After that we turn our attention to the more interesting case of
multiple robots.

We define the schedule of a robot in R! to be a zigzag schedule, or zigzag for
short, if the robot moves back and forth along an interval at maximum speed
(and only turns at the endpoints of the interval).

Observation 1 Let P be a collection of n sites in R with arbitrary weights.
Then the zigzag schedule where a robot travels back and forth between the leftmost
and the rightmost site in P is optimal for a single robot.

Proof. Let s1,...,8, be the sites in P, ordered from left to right, and let w;
denote the weight of s;. Then the weighted latency of s; in the zigzag schedule
is w; - max(2 d(s;, $1),2 d(s;,sn)). Let s;« be a site whose weighted latency
is maximal, and assume without loss of generality that d(s;«,s1) > d(s;, s5).
Clearly the minimum weighted latency of a robot that only has to visit s; and
s; is at most the minimum weighted latency of a robot that must visit all sites
in P. The former is equal to w;« - 2 d(s;=,s1) because the robot must go back
and forth between s; and s;«. Since the zigzag on P has latency w;« - 2 d(s;, s1)
as well, it must thus be optimal. a

4.1 An Optimal Solution for Uniform Weights

We just observed that for a single robot a zigzag schedule is always optimal.
Next, we prove a similar result for multiple robots, as long as the sites have
uniform weights. More precisely, we show there is an optimal schedule consisting
of disjoint zigzags.

Theorem 2. Let P be a set of n sites in R, with uniform weights, and let k be
the number of available robots, where 1 < k < n. Then there exists an optimal
schedule such that each robot follows a zigzag schedule and the intervals covered
by these zigzag schedules are disjoint.

Proof. Let r1,...,r; denote the available robots and assume that initially the
robots are ordered from left to right with ties broken arbitrarily. Let f;(¢) denote
the position of robot 7; at time t. We may assume that this ordering does not
change. That is, f1(t) < fa(t) < -+ < fi(t) at any time t. Indeed, when two
robots swap, we can switch their roles so that we keep the original order.

Let a; and b; be the leftmost and rightmost site ever visited by r;, respectively,
and define I; := [a;, b;]. The order on the robots implies that a; < a; for i < j.
Now consider an optimal schedule with the above properties, where we assume
without loss of generality that each robot is assigned a non-empty interval, which
could be a single point. We will modify this schedule (if necessary) to obtain an
optimal schedule consisting of disjoint zigzags. First we ensure that a; < a; for all
i < j. Suppose that a; = a; for (one or more) j > i. Note that at any time ¢ such
that f;(t) = a; for some j > i, we must also have f;(t) = a;. Hence, the visits
of these robots r; to a; are not necessary, and we can modify their schedules so

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 13

that their leftmost visited sites are the site immediately to the right of a;. By
doing this repeatedly we obtain a schedule such that a; < a; for all i < j.

We now prove the following statement—mnote that this statement implies the
lemma—-by induction on j:

There is an optimal schedule such that, for any 1 < j < k, we have (i) the

intervals Iy,...,I; are disjoint from each other and from the intervals
Iit1,..., Ik, and (ii) each of the robot r; with 1 < ¢ < j follows a zigzag
on I;.

First consider the case j = 1. Note that a; is the leftmost site in P and that ry
is the only robot visiting a;. Since 7 also visits by, the latency of a; is at least
2(by — a1), which is achieved if we make ry follow a zigzag along I;. This zigzag
guarantees a latency 2(b; — ay) for any site in I3, so there is no need for another
robot to visit those sites. Hence, we can ensure that the intervals Io, ..., I, are
strictly to the right of I;, and so the statement is true for j = 1.

Now consider the case j > 1. Because a; < a; for all ¢ > j we know that a; is
not visited by any of the robots r; with ¢ > j. By the induction hypothesis a; is
not visited by any of the robots r; with 7 < j either. Hence, r; is the only robot
visiting a;. Following the same reasoning as in the case j = 1 we can thus ensure

that r; follows a zigzag along I; and that the intervals I; 1, ..., I} are disjoint
from I;. Together with the induction hypothesis this proves the statement for j,
thus finishing the proof. a0

With Theorem 2, the min-max latency problem reduces to the following: Given
a set S of n numbers and a parameter k, compute the smallest L such that S
can be covered by k intervals of length at most L. When §' is stored in sorted
order in an array, L can be computed in O(k?log®n) time [1, Theorem 14]. If
S is not sorted, there is a 2(nlogn) lower bound in the algebraic computation
tree model [7], since for k = n — 1 element uniqueness reduces to this problem.

4.2 Sites of Arbitrary Weights

In general, if the sites have different weights, there may not exist an optimal
solution that is composed of disjoint zigzags; see [2] for details. In the following,
we describe a 12-approximation algorithm that runs in polynomial time when k,
the number of robots, is a constant. The algorithm uses dynamic programming
and has running time ((n/wmin)°*)), where n is the number of sites and the
maximum weight is 1 and the minimum weight is wpi,. In order to get an
approximate solution, we will perform a series of relaxations to our problem.
First, we introduce the Dyadic Time Window Problem.

Definition 1 (Dyadic Time Window Problem (DTW) and Dyadic Time
Window Tour Problem (DTT)). Let s1,--- , s, be a collection of n weighted
sites in R, where w; denotes the weight of s;, such that 1 = wy > wa > ... > wy,
and each weight w; is of the form (1/2)*) for some non-negative integer o(i).
Given a parameter A called the window length, the decision version of the k-robot

14 Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

Dyadic Time Window Problem (DTW) asks whether there exists a schedule of
the k robots for the time interval [0, A/wy] with the following property: each site
s; is visited at least once during every time interval [(j — 1)A/w;, jA/w;] with
Jje{l,...,w;/wy,}. In the optimization version of the DTW problem, we ask for
a minimum value of A and wish to output a schedule achieving this minimum.
The k-robot Dyadic Time Window Tour Problem (DTT) is defined similarly,
except that we find an infinite schedule in which each site s; is visited at least
once during every time interval [(j — 1)A/w;, jA/w;] for all positive integers j.

The reason we introduce the DTW and DTT problems is that answers to these
problems can help to provide constant approximations to the k-robot min-max
weighted latency problem.

Lemma 6. If there is a y-approximation algorithm that solves DTT problem
where sites have weights as powers of two, we can use it to solve the k-robot
min-max weighted latency problem, in which site weights are not necessarily
powers of two, with an approzimation factor 4~.

Next, we briefly review how to solve the DTW problem approximately. This
is built on the following observations. First, consider an optimal schedule ¢* to
the DTW problem with window length A*. Consider the schedule f of a robot
r during the smallest interval I; = [(j — 1)A*, jA*],j € {1,2,--- ,1/w,}. There
are two possibilities: 1) the robot visits some sites during this time interval; 2)
the robot does not visit any site but is in the middle of moving from one site
s1 to another site s (but both s; and sy are visited outside the time interval
I;). The later is called a M-schedule. For the former, since the sites are on a line,
there are four parameters that are important to the schedule f[I;]: the starting
position, the ending position, and the leftmost/rightmost point that r travels
to — a schedule f’ that matches these four parameters will visit all sites visited
in f within interval I;. Thus f[I;] can be replaced by the schedule traveling
the minimum distance and meeting this requirement, called a P-schedule with
the four parameters. Therefore, we use an exchange argument and assume that
the optimal schedule does use a P-schedule (with possibly extra waiting time at
the ending position). Further, we can actually limit the four parameters taking
only values at site locations, which introduces another factor of three to the
approximation ratio.

For an algorithm to solve the decision version of DTW, we run a bottom-up
process by a proper concatenation of P-schedules and M-schedules, which have
their parameters (the starting position, ending position and leftmost/rightmost
points) limited to site locations. The main idea is to first find all possible schedules
that cover sites of weight 1 for an interval of duration A. Keep all such schedules
in a set Qp. In general, we have the schedules in Q;_; as the schedules for
k-robots for an interval of duration 27! A, that meet the requirements for all
sites of weight at least 1/27~1. We take all possible concatenations of pairs of
schedules in Q;_; and keep only those that cover the sites with weight 1/ 27 If
Q,,, is not empty, we answer positively to the DTW. We show that if A > 3A4*
we will answer positively. The details are in [2].

Approx. Alg. for Multi-Robot Patrol-Scheduling with Min-Max Latency 15

The last step is to find a DTT schedule, using the above solution to the DTW

problem. The main idea is to identify all valid DTW solutions for a A > 3A4* and
look for a cycle among them. The details of the algorithm and the analysis are
provided in [2].

Theorem 3. A 12-approximation of the min-mazx weighted latency for n sites in
R! with k robots, for a constant k, can be found in time ((n/wmyin)°®), where
the maximum weight of any site is 1 and the minimum weight is Wiy -

References

1.

10.

11.

12.

13.

14.

M. Abrahamsen, M. de Berg, K. Buchin, M. Mehr, and A. D. Mehrabi. Range-
clustering queries. In 33rd International Symposium on Computational Geometry
(SoCG 2017), 14-17, pages 1-16, 2017.

. P. Afshani, M. de Berg, K. Buchin, J. Gao, M. Loffler, A. Nayyeri, B. Raichel,

R. Sarkar, H. Wang, and H.-T. Yang. Approximation algorithms for multi-robot
patrol-scheduling with min-max latency. https://arxiv.org/abs/2005.02530, 2020.

. S. Alamdari, E. Fata, and S. L. Smith. Persistent monitoring in discrete envi-

ronments: Minimizing the maximum weighted latency between observations. The
International Journal of Robotics Research, 33(1):138-154, 2014.

. E. M. Arkin, R. Hassin, and A. Levin. Approximations for minimum and min-max

vehicle routing problems. Journal of Algorithms, 59(1):1-18, 2006.

. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman

and other geometric problems. Journal of the ACM (JACM), 45(5):753-782, 1998.

. A. B. Asghar, S. L. Smith, and S. Sundaram. Multi-robot routing for persistent

monitoring with latency constraints. In 2019 American Control Conference (ACC),
pages 2620-2625, 2019.

. M. Ben-Or. Lower bounds for algebraic computation trees. In Proceedings of the

15th Annual ACM Symposium on Theory of Computing, pages 80-86, 1983.

. Y. Chevaleyre. Theoretical analysis of the multi-agent patrolling problem. In

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages
302-308, 2004.

. N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman

problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management
Sciences Research Group, 1976.

J. Czyzowicz, L. Gasieniec, A. Kosowski, and E. Kranakis. Boundary patrolling by
mobile agents with distinct maximal speeds. In European Symposium on Algorithms,
pages 701-712, 2011.

G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management
science, 6(1):80-91, 1959.

N. Drucker, M. Penn, and O. Strichman. Cyclic routing of unmanned aerial vehicles.
In International Conference on AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pages 125-141, 2016.

A. Dumitrescu, A. Ghosh, and C. D. T6th. On fence patrolling by mobile agents.
The Electronic Journal of Combinatorics, 21(3):P3-4, 2014.

Y. Elmaliach, N. Agmon, and G. A. Kaminka. Multi-robot area patrol under
frequency constraints. Annals of Mathematics and Artificial Intelligence, 57(3-
4):293-320, 2009.

16

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Afshani, de Berg, Buchin, Gao, Loffler, Nayyeri, Raichel, Sakar, Wang, Yang

Y. Elmaliach, A. Shiloni, and G. A. Kaminka. A realistic model of frequency-
based multi-robot polyline patrolling. In Proceedings of the 7th International Joint
Conference on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS
’08, pages 63—-70, Richland, SC, 2008.

L. Gasieniec, R. Klasing, C. Levcopoulos, A. Lingas, J. Min, and T. Radzik. Bam-
boo garden trimming problem (perpetual maintenance of machines with different
attendance urgency factors). In SOFSEM 2017: Theory and Practice of Computer
Science, pages 229-240, 2017.

B. L. Golden, S. Raghavan, and E. A. Wasil. The vehicle routing problem: latest
advances and new challenges, volume 43. Springer Science & Business Media, 2008.
L. Tocchi, L. Marchetti, and D. Nardi. Multi-robot patrolling with coordinated
behaviours in realistic environments. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 27962801, Sept 2011.

A. Kawamura and M. Soejima. Simple strategies versus optimal schedules in
multi-agent patrolling. In International Conference on Algorithms and Complezity,
pages 261-273, 2015.

M. Y. Khachai and E. Neznakhina. A polynomial-time approximation scheme for
the Euclidean problem on a cycle cover of a graph. Proceedings of the Steklov
Institute of Mathematics, 289(1):111-125, 2015.

M. Khachay and K. Neznakhina. Polynomial time approximation scheme for the
minimum-weight k-size cycle cover problem in Euclidean space of an arbitrary fixed
dimension. IFAC-PapersOnLine, 49(12):6-10, 2016.

M. R. Khani and M. R. Salavatipour. Improved approximation algorithms for the
min-max tree cover and bounded tree cover problems. Algorithmica, 69(2):443-460,
2014.

K. S. Liu, T. Mayer, H. T. Yang, E. Arkin, J. Gao, M. Goswami, M. P. Johnson,
N. Kumar, and S. Lin. Joint sensing duty cycle scheduling for heterogeneous coverage
guarantee. In INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE, pages 1-9, 2017.

J. S. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A
simple polynomial-time approximation scheme for geometric TSP, k-mst, and
related problems. SIAM Journal on computing, 28(4):1298-1309, 1999.

C. H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.
Theoretical computer science, 4(3):237-244, 1977.

D. Portugal, C. Pippin, R. P. Rocha, and H. Christensen. Finding optimal routes
for multi-robot patrolling in generic graphs. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 363-369, 2014.

D. Portugal and R. P. Rocha. On the performance and scalability of multi-robot
patrolling algorithms. In 2011 IEEE International Symposium on Safety, Security,
and Rescue Robotics, pages 50-55, Nov 2011.

E. Stump and N. Michael. Multi-robot persistent surveillance planning as a vehicle
routing problem. In Automation Science and Engineering (CASE), 2011 IEEE
Conference on, pages 569-575, Aug 2011.

P. Toth and D. Vigo. The vehicle routing problem. SIAM, 2002.

W. Xu, W. Liang, and X. Lin. Approximation algorithms for min-max cycle cover
problems. IEEE Transactions on Computers, 64(3):600-613, 2013.

H.-T. Yang, S.-Y. Tsai, K. S. Liu, S. Lin, and J. Gao. Patrol scheduling against
adversaries with varying attack durations. In Proceedings of the 18th International
Conference on Autonomous Agents and Multi-Agent Systems, pages 1179-1188,
2019.

