Skip to main content

Seizure Detection Using Deep Discriminative Multi-set Canonical Correlation Analysis

  • Conference paper
  • First Online:
  • 899 Accesses

Abstract

Due to the nonlinear and nonstationary properties in EEG signals, some seizure detection methods tried to decompose EEG signal into nonlinear and nonstationary components and use them for feature extraction. Seizure detection results showed a certain degree of improvement in these approaches. Based on this idea, more signal decomposition methods have been explored. Signal decomposition methods are designed according to different principles, which show different properties of signals. So, it can be more effective using features extracted from different signal decomposition methods. Based on this consideration, a novel method for seizure detection based on feature combination exploiting deep neural network is proposed in this paper. We introduced a discriminative extension of Deep Multi-set Canonical Correlation Analysis (DMCCA) for seizure detection. Features extracted from different decomposed signals are combined by a joint optimization target of discriminative loss and multi-set canonical correlation loss, which is both discriminative and canonical correlated. Preliminary experiments show the proposed method improves seizure detection results in terms of accuracy and AUC.

This research is supported by Young Innovative Talents Project of 2018 Guangdong University’s key scientific research platform and scientific research project, project number: 2018GkQNCX087.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mohseni, H., Maghsoudi, A., Shamsollahi, M.B.: Seizure detection in EEG signals: a comparison of different approaches. In: International Conference of the IEEE Engineering in Medicine and Biology Society, New York, USA, August 2006, pp. 6724–6727 (2006)

    Google Scholar 

  2. Sharmila, A., Geethanjali, P.: A review on the pattern detection methods for epilepsy seizure detection from EEG signals. Biomed. Eng. 64(5), 507–517 (2019)

    Article  Google Scholar 

  3. Sharmila, A.: Epilepsy detection from EEG signals: a review. J. Med. Eng. Technol. 42(5), 368–380 (2018)

    Article  Google Scholar 

  4. Srinivasan, V., Eswaran, C., Sriraam, N.: Artificial neural network based epileptic detection using time-domain and frequency-domain features. J. Med. Syst. 29(6), 647–660 (2005). https://doi.org/10.1007/s10916-005-6133-1

    Article  Google Scholar 

  5. Tzallas, A.T., Tsipouras, M.G., Fotiadis, D.I.: Epileptic seizure detection in EEGs using time-frequency analysis. IEEE Trans. Inf. Technol. Biomed. 13(5), 703–710 (2009)

    Article  Google Scholar 

  6. Robinson, N., Vinod, A.P., Ang, K.K., Tee, K.P., Guan, C.: EEG-based classification of fast and slow hand movements using wavelet-CSP algorithm. IEEE Trans. Biomed. Eng. 60(8), 2123–2132 (2013)

    Article  Google Scholar 

  7. Pachori, R.B., Sircar, P.: EEG signal analysis using FB expansion and second-order linear TVAR process. Sig. Process. 88(2), 415–420 (2008)

    Article  Google Scholar 

  8. Long, S.R., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998)

    Article  MathSciNet  Google Scholar 

  9. Oweis, R.J., Abdulhay, E.: Seizure classification in EEG signals utilizing Hilbert-Huang transform. Biomed. Eng. Online 10(1), 38 (2011)

    Article  Google Scholar 

  10. Pachori, R.B.: Discrimination between ictal and seizure-free EEG signals using empirical mode decomposition. Res. Lett. Signal Process. 2008, 14 (2008)

    Article  Google Scholar 

  11. Bajaj, V., Pachori, R.B.: Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Trans. Inf Technol. Biomed. 16(6), 1135–1142 (2012)

    Article  Google Scholar 

  12. Alam, S.M.S., Bhuiyan, M.I.H.: Detection of seizure and epilepsy using higher order statistics in the EMD domain. IEEE J. Biomed. Health Inform. 17(2), 312–318 (2013)

    Article  Google Scholar 

  13. Alickovic, E., Kevric, J., Subasi, A.: Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed. Signal Process. Control 39, 94–102 (2018)

    Article  Google Scholar 

  14. Gilles, J.: Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)

    Article  MathSciNet  Google Scholar 

  15. Bhattacharyya, A., Sharma, M., Pachori, R.B., Sircar, P., Acharya, U.R.: A novel approach for automated detection of focal EEG signals using empirical wavelet transform. Neural Comput. Appl. 29(8), 47–57 (2016). https://doi.org/10.1007/s00521-016-2646-4

    Article  Google Scholar 

  16. Saxena, S., Hemanth, C., Sangeetha, R.G.: Classification of normal, seizure and seizure-free EEG signals using EMD and EWT. In: 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software, pp. 360–366, March 2017

    Google Scholar 

  17. Dragomiretskiy, K., Zosso, D.: Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)

    Article  MathSciNet  Google Scholar 

  18. Taran, S., Bajaj, V.: Clustering variational mode decomposition for identification of focal EEG signals. IEEE Sens. Lett. 2(4), 1–4 (2018)

    Article  Google Scholar 

  19. Ravi Kumar, M., Srinivasa Rao, Y.: Epileptic seizures classification in EEG signal based on semantic features and variational mode decomposition. Cluster Comput. 22(6), 13521–13531 (2019)

    Article  Google Scholar 

  20. Carvalho, V.R., Moraes, M.F.D., Braga, A.P., Mendes, E.M.A.M.: Evaluating three different adaptive decomposition methods for EEG signal seizure detection and classification. BioRxiv, p. 691055 (2019)

    Google Scholar 

  21. Roth, V., Steinhage, V.: Nonlinear discriminant analysis using kernel functions. In: Advances in Neural Information Processing Systems 12, pp. 568–574. MIT Press (2000)

    Google Scholar 

  22. Dorfer, M., Kelz, R., Widmer, G.: Deep linear discriminant analysis. In: 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016 (2016)

    Google Scholar 

  23. Somandepalli, K., Kumar, N., Travadi, R., Narayanan, S.: Multimodal representation learning using deep multiset canonical correlation (2019)

    Google Scholar 

  24. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuefeng Bai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, X., Yan, L., Li, Y. (2021). Seizure Detection Using Deep Discriminative Multi-set Canonical Correlation Analysis. In: Guan, M., Na, Z. (eds) Machine Learning and Intelligent Communications. MLICOM 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 342. Springer, Cham. https://doi.org/10.1007/978-3-030-66785-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66785-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66784-9

  • Online ISBN: 978-3-030-66785-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics