Skip to main content

Object Detection Using Clustering Algorithm Adaptive Searching Regions in Aerial Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12538))

Abstract

Aerial images are increasingly used for critical tasks, such as traffic monitoring, pedestrian tracking, and infrastructure inspection. However, aerial images have the following main challenges: 1) small objects with non-uniform distribution; 2) the large difference in object size. In this paper, we propose a new network architecture, Cluster Region Estimation Network (CRENet), to solve these challenges. CRENet uses a clustering algorithm to search cluster regions containing dense objects, which makes the detector focus on these regions to reduce background interference and improve detection efficiency. However, not every cluster region can bring precision gain, so each cluster region difficulty score is calculated to mine the difficult region and eliminate the simple cluster region, which can speed up the detection. Then, a Gaussian scaling function(GSF) is used to scale the difficult cluster region to reduce the difference of object size. Our experiments show that CRENet achieves better performance than previous approaches on the VisDrone dataset. Our best model achieved 4.3\(\%\) improvement on the VisDrone dataset.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The ROI here is different from Faster RCNN [29]. The ROI of this paper contains not just one object but multiple objects of interest, and it is used to represent the region with dense objects.

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection (2020)

    Google Scholar 

  2. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS - improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  3. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  5. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning RoI transformer for detecting oriented objects in aerial images (2018)

    Google Scholar 

  6. Everingham, M., Eslami, S.M.A., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)

    Article  Google Scholar 

  7. Fu, C.Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: DSSD : deconvolutional single shot detector (2017)

    Google Scholar 

  8. Gao, M., Yu, R., Li, A., Morariu, V.I., Davis, L.S.: Dynamic zoom-in network for fast object detection in large images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014

    Google Scholar 

  11. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  13. LaLonde, R., Zhang, D., Shah, M.: ClusterNet: detecting small objects in large scenes by exploiting spatio-temporal information. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  14. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  15. Li, C., Yang, T., Zhu, S., Chen, C., Guan, S.: Density map guided object detection in aerial images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

    Google Scholar 

  16. Li, Y., Huang, Q., Pei, X., Jiao, L., Shang, R.: RADet: refine feature pyramid network and multi-layer attention network for arbitrary-oriented object detection of remote sensing images. Remote Sens. 12(3) (2020). https://doi.org/10.3390/rs12030389

  17. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Lu, Y., Javidi, T., Lazebnik, S.: Adaptive object detection using adjacency and zoom prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  21. Ma, J., Shao, W., Ye, H., Wang, L., Wang, H., Zheng, Y., Xue, X.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimed. 20(11), 3111–3122 (2018)

    Article  Google Scholar 

  22. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 850–855 (2006)

    Google Scholar 

  23. Newell, A., Yang, K., Deng, J.: Stacked Hourglass Networks for Human Pose Estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  24. Unel, F.O., Ozkalayci, B.O., Cigla, C.: The power of tiling for small object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  25. Perreault, H., Bilodeau, G., Saunier, N., Héritier, M.: SpotNet: self-attention multi-task network for object detection. In: 2020 17th Conference on Computer and Robot Vision (CRV), pp. 230–237 (2020)

    Google Scholar 

  26. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  27. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  28. Redmon, J., Farhadi, A.: YOLOV3: an incremental improvement (2018)

    Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 91–99. Curran Associates, Inc. (2015). http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  31. Tang, Z., Liu, X., Shen, G., Yang, B.: PENet: object detection using points estimation in aerial images (2020)

    Google Scholar 

  32. Uzkent, B., Ermon, S.: Learning when and where to zoom with deep reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020

    Google Scholar 

  33. Uzkent, B., Yeh, C., Ermon, S.: Efficient object detection in large images using deep reinforcement learning. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), March 2020

    Google Scholar 

  34. Wang, H., et al.: Spatial attention for multi-scale feature refinement for object detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  35. Wu, Z., Suresh, K., Narayanan, P., Xu, H., Kwon, H., Wang, Z.: Delving into robust object detection from unmanned aerial vehicles: a deep nuisance disentanglement approach. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  36. Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  37. Yang, F., Fan, H., Chu, P., Blasch, E., Ling, H.: Clustered object detection in aerial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  38. Yang, X., Liu, Q., Yan, J., Li, A., Zhang, Z., Yu, G.: R3Det: refined single-stage detector with feature refinement for rotating object (2019)

    Google Scholar 

  39. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. 17(8), 790–799 (1995)

    Article  Google Scholar 

  40. Yu, F., Wang, D., Shelhamer, E., Darrell, T.: Deep layer aggregation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  41. Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z.: Scale match for tiny person detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), March 2020

    Google Scholar 

  42. Zhang, J., Huang, J., Chen, X., Zhang, D.: How to fully exploit the abilities of aerial image detectors. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, October 2019

    Google Scholar 

  43. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019)

    Google Scholar 

  44. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019

    Google Scholar 

  45. Zhu, P., Wen, L., Bian, X., Ling, H., Hu, Q.: Vision meets drones: a challenge (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China grant 61573266.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youlong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Yang, Y., Zhao, X. (2020). Object Detection Using Clustering Algorithm Adaptive Searching Regions in Aerial Images. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66823-5_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66822-8

  • Online ISBN: 978-3-030-66823-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics