Skip to main content

Deep Voxel-Guided Morphometry (VGM): Learning Regional Brain Changes in Serial MRI

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12449))

Abstract

Change detection and progression assessment in multiple sclerosis (MS) by serial magnetic resonance imaging (MRI) are important, yet challenging tasks. Analysis algorithms such as Voxel-Guided Morphometry (VGM) enable detection and quantification of even minor changes of the brain at different time points. To shorten computation times and ameliorate clinical applicability, we developed a convolutional neural network based VGM (Deep VGM) providing a fast solution for intra-individual serial volume change analysis in MS.

We developed a residual architecture based on the 3D U-Net and investigated several loss functions to predict VGM maps from a base line and a follow up brain MRI. We train and test our approach in 71 MS patients. The Deep VGM maps are compared to the respective VGM maps via several image metrics and rated by an experienced neurologist.

Deep VGM configured with the Mean Absolute Error and Gradient loss outperformed all other tested loss functions. Deep VGM maps showed high similarity to the original VGM maps (SSIM \(= 0.9521 \pm 0.0236\)). This was additionally confirmed by a neurologist analysing the MS lesions. Deep VGM resulted in a 3% lesion error rate compared to the original VGM approach. Computation time of Deep VGM was 99.62% shorter than VGM. Our experiments demonstrate that Deep VGM can approximate the complex VGM mapping at high quality while saving computation time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bauer, D.F., et al.: Synthesis of CT images using CycleGANs: enhancement of anatomical accuracy. In: International Conference on Medical Imaging with Deep Learning, London, United Kingdom, July 2019

    Google Scholar 

  2. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  3. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945). https://doi.org/10.2307/1932409

    Article  Google Scholar 

  4. Fox, J., et al.: Individual assessment of brain tissue changes in MS and the effect of focal lesions on short-term focal atrophy development in MS: a voxel-guided morphometry study. Int. J. Mol. Sci. 17(4), 489 (2016). https://doi.org/10.3390/ijms17040489

    Article  Google Scholar 

  5. Gregori, J., et al.: Feasibility of fully automated atrophy measurement of the upper cervical spinal cord for group analyses and patient-individual diagnosis support in MS. In: Congress of the European Committee for Treatment and Research in Multiple Sclerosis, Berlin, Germany, p. P1120, October 2018

    Google Scholar 

  6. Kaunzner, U.W., Gauthier, S.A.: MRI in the assessment and monitoring of multiple sclerosis: an update on best practice. Ther. Adv. Neurol. Disord. 10(6), 247–261 (2017). https://doi.org/10.1177/1756285617708911

    Article  Google Scholar 

  7. Kraemer, M., et al.: Individual assessment of chronic brain tissue changes in MRI-the role of focal lesions for brain atrophy development. A voxel-guided morphometry study. Klin. Neurophysiol. 39(01), A178 (2008). https://doi.org/10.1055/s-2008-1072980

  8. Kraemer, M., Schormann, T., Hagemann, G., Qi, B., Witte, O.W., Seitz, R.J.: Delayed shrinkage of the brain after ischemic stroke: preliminary observations with voxel-guided morphometry. J. Neuroimaging 14(3), 265–272 (2004)

    Article  Google Scholar 

  9. Lewis, E.B., Fox, N.C.: Correction of differential intensity inhomogeneity in longitudinal MR images. Neuroimage 23(1), 75–83 (2004). https://doi.org/10.1016/j.neuroimage.2004.04.030

    Article  Google Scholar 

  10. Lladó, X., et al.: Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology 54(8), 787–807 (2012). https://doi.org/10.1007/s00234-011-0992-6

    Article  Google Scholar 

  11. Lundervold, A.S., Lundervold, A.: An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik 29(2), 102–127 (2019). https://doi.org/10.1016/j.zemedi.2018.11.002

    Article  Google Scholar 

  12. Patel, N., et al.: Detection of focal longitudinal changes in the brain by subtraction of MR images. Am. J. Neuroradiol. 38(5), 923–927 (2017). https://doi.org/10.3174/ajnr.A5165

    Article  Google Scholar 

  13. Polman, C., et al.: Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann. Neurol. 69(2), 292–302 (2011). https://doi.org/10.1002/ana.22366

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Schormann, T., Kraemer, M.: Voxel-guided morphometry (“VGM”) and application to stroke. IEEE Trans. Med. Imaging 22(1), 62–74 (2003)

    Article  Google Scholar 

  16. Segonne, F., et al.: A hybrid approach to the skull stripping problem in MRI. Neuroimage 22, 1060–1075 (2004). https://doi.org/10.1016/j.neuroimage.2004.03.032

    Article  Google Scholar 

  17. Seo, H.J., Milanfar, P.: A non-parametric approach to automatic change detection in MRI images of the brain. In: IEEE International Symposium on Biomedical Imaging, Boston, MA, USA, pp. 245–248, June 2009. https://doi.org/10.1109/ISBI.2009.5193029

  18. Sepahvand, N.M., Arnold, D.L., Arbel, T.: CNN detection of new and enlarging multiple sclerosis lesions from longitudinal MRI using subtraction images. In: IEEE International Symposium on Biomedical Imaging, Iowa City, IA, USA, pp. 127–130, April 2020. https://doi.org/10.1109/ISBI45749.2020.9098554

  19. Sørensen, T.J.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. I kommission hos E. Munksgaard (1948)

    Google Scholar 

  20. Tousignant, A., Lemaître, P., Precup, D., Arnold, D.L., Arbel, T.: Prediction of disease progression in multiple sclerosis patients using deep learning analysis of MRI data. In: International Conference on Medical Imaging with Deep Learning, PMLR, vol. 102, London, United Kingdom, pp. 483–492, July 2019

    Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research project is funded by the Ministry of Economic Affairs Baden Württemberg within the framework “KI für KMU”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alena-Kathrin Schnurr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schnurr, AK. et al. (2020). Deep Voxel-Guided Morphometry (VGM): Learning Regional Brain Changes in Serial MRI. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics