Skip to main content

Brain MRI Classification Using Gradient Boosting

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Early detection of Isocitrate Dehydrogenase (IDH) mutations can be used in decision making procedures. We demonstrated the role of important features identification using extreme gradient boosting ensemble from MR imagery and their effectiveness in classification of IDH mutations.

In this work, the MR images are first pre-processed using a number of image processing techniques. Then features are extracted from the pre-processed images that are further classified using boosting ensemble. After, removing very high negative and postive as well as zero valued attributes from the extracted feature spaces, an increase in the performance accuracy is observed. The proposed technique is simple yet efficient in classifying IDH mutations from MR imagery. This will help practitioners to noninvasively diagnose and predict IDH wildtype and IDH mutants for grades II, III, and IV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, K., et al.: Residual convolutional neural network for the determination of IDH status in low-and high-grade gliomas from MR imaging. Clin. Cancer Res. 24(5), 1073–1081 (2018)

    Article  Google Scholar 

  2. Biller, A., et al.: Improved brain tumor classification by sodium MR imaging: prediction of IDH mutation status and tumor progression. Am. J. Neuroradiol. 37(1), 66–73 (2016)

    Article  Google Scholar 

  3. Guo, C., Pirozzi, C.J., Lopez, G.Y., Yan, H.: Isocitrate dehydrogenase mutations in gliomas: mechanisms, biomarkers and therapeutic target. Curr. Opin. Neurol. 24(6), 648 (2011)

    Article  Google Scholar 

  4. Shboul, Z.A., Chen, J., Iftekharuddin, K.M.: Prediction of molecular mutations in diffuse low-grade gliomas using MR imaging features. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  5. Ding, H., et al.: Prediction of IDH status through MRI features and enlightened reflection on the delineation of target volume in low-grade gliomas. Technol. Cancer Res. Treat. 18, 1533033819877167 (2019)

    Google Scholar 

  6. Yu, J., et al.: Noninvasive IDH1 mutation estimation based on a quantitative radiomics approach for grade II glioma. Eur. Radiol. 27(8), 3509–3522 (2017)

    Article  Google Scholar 

  7. Smith, S.M., Brady, J.M.: Susan—a new approach to low level image processing. Int. J. Comput. Vis. 23(1), 45–78 (1997)

    Article  Google Scholar 

  8. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17(1), 87–97 (1998)

    Article  Google Scholar 

  9. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: Fsl. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  10. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3), 143–155 (2002)

    Article  Google Scholar 

  11. Yushkevich, P.A., Gao, Y., Gerig, G.: ITK-SNAP: an interactive tool for semi-automatic segmentation of multi-modality biomedical images. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3342–3345. IEEE (2016)

    Google Scholar 

  12. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 6, 610–621 (1973)

    Article  Google Scholar 

  13. Galloway, M.M.: Texture analysis using gray level run lengths (1975)

    Google Scholar 

  14. Tang, X.: Texture information in run-length matrices. IEEE Trans. Image Process. 7(11), 1602–1609 (1998)

    Article  Google Scholar 

  15. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Trans. Syst. Man Cybern. 19(5), 1264–1274 (1989)

    Article  Google Scholar 

  16. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  MATH  Google Scholar 

  17. Bilello, M., et al.: Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. NeuroImage Clin. 12, 34–40 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tahir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tahir, M. (2020). Brain MRI Classification Using Gradient Boosting. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics