Skip to main content

Generic Framework for Optimization of Local Dissemination in Wireless Networks

  • Conference paper
  • First Online:
  • 401 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 12129))

Abstract

We present a generic framework to compute transmission schedules for a comprehensive set of well-known local dissemination problems in Wireless Networks. In our framework, we formulate the communication restrictions to overcome while solving those problems as a mathematical optimization program, where the objective function is to minimize the transmissions schedule length. The program is solved by standard methods which may yield partial solutions. So, the method is iterated until the solution is complete. The schedules obtained achieve the desired dissemination under the general affectance model of interference. We prove the correctness of our model and we evaluate its efficiency through simulations.

This work was partially supported by the National Science Center Poland (NCN) grant 2017/25/B/ST6/02553; the UK Royal Society International Exchanges 2017 Round 3 Grant #170293; and Pace University SRC Grant and Kenan Fund.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    If a Link-scheduling input contains multiple instances of the same originating node, representing different links/packets outgoing from that node, we can simply create virtual copies of the node. We keep the assumption of different link originators for the easy of presentation of the generic framework.

References

  1. Afek, Y. (ed.): DISC 2013. LNCS, vol. 8205. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41527-2

    Book  MATH  Google Scholar 

  2. Chlamtac, I., Kutten, S.: Tree-based broadcasting in multihop radio networks. IEEE Trans. Comput. 36(10), 1209–1223 (1987)

    Article  Google Scholar 

  3. Daum, S., Gilbert, S., Kuhn, F., Newport, C.C.: Broadcast in the ad hoc sinr model. In: Afek [1], pp. 358–372 (2013)

    Google Scholar 

  4. Genova, K., Guliashki, V.: Linear integer programming methods and approaches–a survey. J. Cybernetics Inf. Technol. 11(1) 56 (2011)

    Google Scholar 

  5. Halldórsson, M.M., Wattenhofer, R.: Wireless communication is in apx. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming, Part I. pp. 525–536 (2009)

    Google Scholar 

  6. Kao, M.-Y. (ed.): Encyclopedia of Algorithms. Springer, New York (2016). https://doi.org/10.1007/978-1-4939-2864-4

    Book  MATH  Google Scholar 

  7. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Distributed randomized broadcasting in wireless networks under the sinr model. In: Afek [1], pp. 373–387 (2013)

    Google Scholar 

  8. Jurdzinski, T., Kowalski, D.R., Rozanski, M., Stachowiak, G.: Deterministic digital clustering of wireless ad hoc networks. In: Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing, pp. 105–114 (2018)

    Google Scholar 

  9. Jurdzinski, T., Kowalski, D.R., Stachowiak, G.: Distributed deterministic broadcasting in uniform-power ad hoc wireless networks. In: Gasieniec, L., Wolter, F. (eds.) FCT 2013. LNCS, vol. 8070, pp. 195–209. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40164-0_20

    Chapter  Google Scholar 

  10. Jurdziński, T., Różański, M.: Deterministic oblivious local broadcast in the SINR model. In: Klasing, R., Zeitoun, M. (eds.) FCT 2017. LNCS, vol. 10472, pp. 312–325. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55751-8_25

    Chapter  Google Scholar 

  11. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-4684-2001-2_9

  12. Kesselheim, T.: Dynamic packet scheduling in wireless networks. In: Proceedings of the 31st Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp. 281–290 (2012)

    Google Scholar 

  13. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_16

    Chapter  MATH  Google Scholar 

  14. Khachiyan, L.G.: A polynomial algorithm in linear programming. In: Doklady Akademii Nauk. vol. 244, pp. 1093–1096. Russian Academy of Sciences (1979)

    Google Scholar 

  15. Kowalski, D.R., Mosteiro, M.A., Rouse, T.: Dynamic multiple-message broadcast: bounding throughput in the affectance model. In: 10th ACM International Workshop on Foundations of Mobile Computing, FOMC 2014, Philadelphia, PA, USA, August 11, 2014, pp. 39–46 (2014)

    Google Scholar 

  16. Kowalski, D.R., Mosteiro, M.A., Zaki, K.: Dynamic multiple-message broadcast: Bounding throughput in the affectance model. CoRR abs/1512.00540 (2015), http://arxiv.org/abs/1512.00540

  17. Kumar, A., Manjunath, D., Kuri, J.: Chapter 2 - wireless communication: Concepts, techniques, models. In: Kumar, A., Manjunath, D., Kuri, J. (eds.) Wireless Networking, pp. 15–51. The Morgan Kaufmann Series in Networking, Morgan Kaufmann, Burlington (2008). https://doi.org/10.1016/B978-012374254-4.50003-X, http://www.sciencedirect.com/science/article/pii/B978012374254450003X

  18. Raghavan, P., Tompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7(4), 365–374 (1987)

    Article  MathSciNet  Google Scholar 

  19. Scheideler, C., Richa, A.W., Santi, P.: An o(log n) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Networking and Computing, pp. 91–100. ACM (2008)

    Google Scholar 

  20. Vutukuru, M., Jamieson, K., Balakrishnan, H.: Harnessing exposed terminals in wireless networks. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, pp. 59–72 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Mosteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kowalski, D.R., Mosteiro, M.A., Wadhwa, K. (2021). Generic Framework for Optimization of Local Dissemination in Wireless Networks. In: Georgiou, C., Majumdar, R. (eds) Networked Systems. NETYS 2020. Lecture Notes in Computer Science(), vol 12129. Springer, Cham. https://doi.org/10.1007/978-3-030-67087-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67087-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67086-3

  • Online ISBN: 978-3-030-67087-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics