
Self-stabilizing Uniform Reliable Broadcast
(preliminary version)

Oskar Lundström ‡ Michel Raynal § Elad M. Schiller ¶

Abstract

We study a well-known communication abstraction called Uniform Reliable Broadcast (URB).
URB is central in the design and implementation of fault-tolerant distributed systems, as many
non-trivial fault-tolerant distributed applications require communication with provable guarantees
on message deliveries. Our study focuses on fault-tolerant implementations for time-free message-
passing systems that are prone to node-failures. Moreover, we aim at the design of an even more
robust communication abstraction. We do so through the lenses of self-stabilization—a very
strong notion of fault-tolerance. In addition to node and communication failures, self-stabilizing
algorithms can recover after the occurrence of arbitrary transient faults; these faults represent
any violation of the assumptions according to which the system was designed to operate (as long
as the algorithm code stays intact).

This work proposes the first self-stabilizing URB solution for time-free message-passing systems
that are prone to node-failures. The proposed algorithm has an O(bufferUnitSize) stabilization
time (in terms of asynchronous cycles) from arbitrary transient faults, where bufferUnitSize
is a predefined constant that can be set according to the available memory. Moreover, the
communication costs of our algorithm are similar to the ones of the non-self-stabilizing state-of-
the-art. The main differences are that our proposal considers repeated gossiping of O(1) bits
messages and deals with bounded space (which is a prerequisite for self-stabilization). Specifically,
each node needs to store up to bufferUnitSize · n records and each record is of size O(ν + n log n)
bits, where n is the number of nodes in the system and ν is the number of bits needed to encode
a single URB instance.

1 Introduction

We propose a self-stabilizing implementation of a communication abstraction called Uniform Reliable
Broadcast (URB) for time-free message-passing systems whose nodes may fail-stop.

Context and Motivation. Fault-tolerant distributed systems are known to be hard to design
and verify. Such complex challenges can be facilitated by high-level communication primitives.
These high-level primitives can be based on low-level ones, such as the one that allows nodes to send
a message to only one other node at a time. When an algorithm wishes to broadcast message m to
all nodes, it can send m individually to every other node. Note that if the sender fails during this

‡Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, SE-412 96,
Sweden, E-mail: osklunds@student.chalmers.se.

§Institut Universitaire de France IRISA, ISTIC Université de Rennes, Rennes Cedex, 35042, France, and Department
of Computing, Polytechnic University, Hong Kong, E-mail: michel.raynal@irisa.fr.

¶Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, SE-412 96,
Sweden, E-mail: elad@chalmers.se.

ar
X

iv
:2

00
1.

03
24

4v
1

 [
cs

.D
C

]
 9

 J
an

 2
02

0

broadcast, it can be the case that only some of the nodes have received m. Even in the presence of
network-level support for broadcasting or multicasting, failures can cause similar inconsistencies.
To the end of simplifying the design of fault-tolerant distributed algorithms, such inconsistencies
need to be avoided.

The literature has a large number of examples that show how fault-tolerant broadcasts can
significantly simplify the development of fault-tolerant distributed systems via State Machine
Replication [17, 21], Atomic Commitment [19], Virtual Synchrony [6] and Set-Constrained Delivery
Broadcast [16], to name a few. The weakest variance, named Reliable Broadcast (RB), lets all
non-failing nodes agree on the set of delivered messages. Stronger RB variants specify additional
requirements on the delivery order. Such requirements can simplify the design of fault-tolerant
distributed consensus, which allows reaching, despite failures, a common decision based on distributed
inputs. Consensus algorithms and RB are closely related problems [15, 20], which have been studied
for more than three decades.

Task description. Uniform Reliable Broadcast (URB) is a variance of the reliable broadcast
problem, which requires that if a node delivers a message, then all non-failing nodes also deliver this
message [15]. The task specifications consider an operation for URB broadcasting of message m
and an event of URB delivery of message m. The requirements include URB-validity, i.e., there is
no spontaneous creation or alteration of URB messages, URB-integrity, i.e., there is no duplication
of URB messages, as well as URB-termination, i.e., if the broadcasting node is non-faulty, or if at
least one receiver URB-delivers a message, then all non-failing nodes URB-deliver that message.
Note that the URB-termination property considers both faulty and non-faulty receivers. This is
the reason why this type of reliable broadcast is named uniform. This work considers a URB
implementation that is quiescent in the sense that every URB operation incurs a finite number of
messages. Moreover, our implementation uses a bounded amount of local memory.

Fault Model. We consider a time-free (a.k.a asynchronous) message-passing system that has no
guarantees on the communication delay. Moreover, there is no notion of global (or universal) clocks
and we do not assume that the algorithm can explicitly access the local clock (or timeout mechanisms).
Our fault model includes (i) detectable fail-stop failures of nodes, and (ii) communication failures,
such as packet omission, duplication, and reordering. In addition to the failures captured in
our model, we also aim to recover from arbitrary transient faults, i.e., any temporary violation
of assumptions according to which the system and network were designed to operate, e.g., the
corruption of control variables, such as the program counter, packet payload, and operation indices,
which are responsible for the correct operation of the studied system, or operational assumptions,
such as that the network cannot be partitioned for long periods. Since the occurrence of these
failures can be arbitrarily combined, we assume that these transient faults can alter the system state
in unpredictable ways. In particular, when modeling the system, we assume that these violations
bring the system to an arbitrary state from which a self-stabilizing algorithm should recover the
system.

Related Work. The studied problem can be traced back to Hadzilacos and Toueg [15] who
consider asynchronous message-passing, where nodes may fail. They solved several variants to the
studied problem with respect to the delivery order, e.g., FIFO (first in, first out), CO (causal order),
and TO (total order). They also showed that TO-URB and consensus have the same computability
power in the context above. Here we focus only on the basic version of URB. To the end of satisfying
the quiescent property, we consider a more advanced model, see the remark in [20, Section 4.2.1].
For a detailed presentation of existing non-self-stabilizing URB solutions and their applications, we

2

refer the reader to [1, 20]. (Due to the page limit, Section 3 of the Appendix brings some of these
details.) We follow the design criteria of self-stabilization, which was proposed by Dijkstra [10]
and detailed in [4, 11]. Delaët et al. [9] present a self-stabilizing algorithm for the propagation of
information with feedback (PIF) that can be the basis for implementing a self-stabilizing URB.
However, Delaët et al. do not consider node failures [9, Section 6]. To the best of our knowledge,
there is no self-stabilizing algorithm that solves the studied problem for the studied fault-model.

Contributions. We present an important module for dependable distributed systems: a self-
stabilizing algorithm for Uniform Reliable Broadcast (URB) for time-free message-passing systems
that are prone to node failures. To the best of our knowledge, we are the first to provide a broad fault
model that includes detectable fail-stop failures, communication failures, such as packet omission,
duplication, and reordering as well as arbitrary transient faults. The latter can model any violation
of the assumptions according to which the system was designed to operate (as long as the algorithm
code stays intact).

The stabilization time of the proposed solution is in O(bufferUnitSize) (in terms of asynchronous
cycles), where bufferUnitSize is a predefined constant that can be set according to the available
local memory. Our solution uses only a bounded amount of space, which is a prerequisite for
self-stabilization. Specifically, each node needs to store up to bufferUnitSize · n records and each
record is of size O(ν + n log n) bits, where n is the number of nodes in the system and ν is the
number of bits needed to encode a single URB instance. Moreover, the communication costs of our
algorithm are similar to the ones of the non-self-stabilizing state-of-the-art. The main difference is
that our proposal considers repeated gossiping of O(1) bits messages.

Organization. We state our system settings in Section 2. Section 3 includes a brief overview of
some of the earlier ideas that have led to the proposed solution. Our self-stabilizing algorithm is
proposed in Section 4; it considers unbounded counters. The correctness proof appears in Section 5.
We explain how to bound the counters of the proposed self-stabilizing algorithm in Section 7. We
conclude in Section 8.

2 System settings

We consider a time-free message-passing system that has no guarantees on the communication delay.
Moreover, there is no notion of global (or universal) clocks and the algorithm cannot explicitly access
the local clock (or timeout mechanisms). The system consists of a set, P, of n crash-prone nodes
(or processors) with unique identifiers. Any pair of nodes pi, pj ∈ P have access to a bidirectional
communication channel, channelj,i, that, at any time, has at most channelCapacity ∈ N packets on
transit from pj to pi (this assumption is due to a well-known impossibility [11, Chapter 3.2]).

Our analysis considers the interleaving model [11], in which the node’s program is a sequence
of (atomic) steps. Each step starts with an internal computation and finishes with a single
communication operation, i.e., a message send or receive. The state, si, of node pi ∈ P includes
all of pi’s variables and channelj,i. The term system state (or configuration) refers to the tuple
c = (s1, s2, · · · , sn). We define an execution (or run) R = c[0], a[0], c[1], a[1], . . . as an alternating
sequence of system states c[x] and steps a[x], such that each c[x+ 1], except for the starting one,
c[0], is obtained from c[x] by a[x]’s execution.

3

2.1 Task specifications

The set of legal executions (LE) refers to all the executions in which the requirements of the task
T hold. In this work, TURB denotes the task of Uniform Reliable Broadcast (URB) and LEURB

denotes the set of executions in which the system fulfills TURB’s requirements, which Definition 2.1
specifies. Definition 2.1 considers the operation, urbBroadcast(m), and the event urbDeliver(m).
When processor pi ∈ P URB-broadcasts message m, it does so by calling urbBroadcast(m). The
specifications assume that every broadcasted message is unique, say, by associating a message
identity, i.e., the pair (sender identifier , sequence number), where the sequence number is an
(integer) index that is locally generated by the sender.

Definition 2.1 (Uniform Reliable Broadcast [20]) Let R be a system execution. We say that
the system demonstrates in R a construction of the URB communication abstraction if the validity,
integrity, and termination requirements are satisfied.

• Validity. Suppose that pi URB-delivers message m in step ai ∈ R with pj as a sender.
There is a step aj ∈ R that appears in R before ai in which pj URB-broadcasts m.

• Integrity. R includes at most one step in which processor pi URB-delivers message m.

• Termination. Suppose that a non-faulty pi takes a step in R that URB-broadcasts or
URB-delivers message m. Each non-faulty pj ∈ P URB-delivers m during R.

The URB implementation considered in this paper also satisfies the quiescent property (in
a self-stabilizing manner). Our implementation uses MSG and MSGack messages for conveying
information added to the system via urbBroadcast operations. We say that execution R satisfies
the quiescent property if every URB-broadcast message that was USB-delivered incurs a finite
number of MSG and MSGack messages. We note that the quiescent property does not consider all
the messages that the proposed solution uses. Specifically, we use GOSSIP messages of constant size
that the algorithm sends repeatedly. We note that self-stabilizing systems can never stop sending
messages, because if they did, it would not be possible for the system to recover from transient
faults [11, Chapter 2.3].

2.2 The Fault Model and Self-stabilization

We model a failure occurrence as a step that the environment takes rather than the algorithm.

Benign failures. When the occurrence of a failure cannot cause the system execution to lose
legality, i.e., to leave LE, we refer to that failure as a benign one (Figure 1).

Node failure. We consider fail-stop failures, in which nodes stop taking steps. We assume that
there is a way to detect these failures, say, using unreliable failure detectors [8].

Communication failures and fairness. We consider solutions that are oriented towards time-free
message-passing systems and thus they are oblivious to the time in which the packets arrive and
depart. We assume that the communication channels are prone to packet failures, such as omission,
duplication, reordering. However, we assume that if pi sends a message infinitely often to pj , node pj
receives that message infinitely often. We refer to the latter as the fair communication assumption.
For example, the proposed algorithm sends infinitely often GOSSIP messages from any processor to

4

Frequency
Duration Rare Not rare

Any violation of the assumptions according to Packet failures: omissions,
Transient which the system operates (but the code stays duplications, reordering

intact). This can result in any state corruption. (assuming fair communications).
Permanent Detectable fail-stop failures.

Legal execution (LE)Recovery periodPrior to the system
start, consider all faults

Satisfied task requirements start here

Consider all benign faults

System execution starts here

Need fair execution, i.e., consider only packet failures

Figure 1: The table above details our fault model and the chart illustrates when each fault set
is relevant. The chart’s gray shapes represent the system execution, and the white boxes specify
the failures considered to be possible at different execution parts and recovery guarantees of the
proposed self-stabilizing algorithm. The set of benign faults includes both packet failures and
fail-stop failures.

any other. Despite the possible loss of messages, the communication fairness assumption implies
that every processor receives infinitely often GOSSIP messages from any non-failing processor.

Arbitrary transient faults. We consider any violation of the assumptions according to which
the system was designed to operate. We refer to these violations and deviations as arbitrary transient
faults and assume that they can corrupt the system state arbitrarily (while keeping the program
code intact). The occurrence of an arbitrary transient fault is rare. Thus, our model assumes that
the last arbitrary transient fault occurs before the system execution starts [11]. Moreover, it leaves
the system to start in an arbitrary state.

Dijkstra’s self-stabilization criterion An algorithm is self-stabilizing with respect to the task
of LE, when every (unbounded) execution R of the algorithm reaches within a finite period a suffix
Rlegal ∈ LE that is legal. That is, Dijkstra [10] requires that ∀R : ∃R′ : R = R′ ◦Rlegal ∧Rlegal ∈
LE ∧ |R′| ∈ N, where the operator ◦ denotes that R = R′ ◦R′′ concatenates R′ with R′′.

2.3 Complexity Measures

The main complexity measure of self-stabilizing algorithms, called stabilization time, is the time it
takes the system to recover after the occurrence of the last transient fault.

Message round-trips and iterations of self-stabilizing algorithms. The correctness proof
depends on the nodes’ ability to exchange messages during the periods of recovery from transient
faults. The proposed solution considers communications that follow the pattern of request-reply,
i.e., MSG and MSGack messages, as well as GOSSIP messages for which the algorithm does not send
replies. The definitions of our complexity measures use the notion of a message round-trip for the
cases of request-reply messages and the term algorithm iteration.

We give a detailed definition of round-trips as follows. Let pi ∈ P and pj ∈ P \ {pi}. Suppose
that immediately after system state c, node pi sends a message m to pj , for which pi awaits a reply.

5

At system state c′, that follows c, node pj receives message m and sends a reply message rm to pi.
Then, at system state c′′, that follows c′, node pi receives pj ’s response, rm. In this case, we say
that pi has completed with pj a round-trip of message m.

It is well-known that self-stabilizing algorithms cannot terminate their execution and stop
sending messages [11, Chapter 2.3]. Moreover, their code includes a do forever loop. Thus, we
define a complete iteration of a self-stabilizing algorithm. Let Ni be the set of nodes with whom pi
completes a message round trip infinitely often in execution R. Moreover, assume that node pi sends
a gossip message infinitely often to pj ∈ P \ {pi} (regardless of the message payload). Suppose that
immediately after the state cbegin, node pi takes a step that includes the execution of the first line
of the do forever loop, and immediately after system state cend, it holds that: (i) pi has completed
the iteration it has started immediately after cbegin (regardless of whether it enters branches), (ii)
every request-reply message m that pi has sent to any node pj ∈ P during the iteration (that has
started immediately after cbegin) has completed its round trip, and (iii) it includes the arrival of
at least one gossip message from pi to any non-failing pj ∈ P \ {pi}. In this case, we say that pi’s
complete iteration (with round-trips) starts at cbegin and ends at cend.

Cost measures: asynchronous cycles and the happened-before relation. We say that a
system execution is fair when every step that is applicable infinitely often is executed infinitely
often and fair communication is kept. Since asynchronous systems do not consider the notion of
time, we use the term (asynchronous) cycles as an alternative way to measure the period between
two system states in a fair execution. The first (asynchronous) cycle (with round-trips) of a fair
execution R = R′ ◦R′′ is the shortest prefix R′ of R, such that each non-failing node executes at
least one complete iteration in R′. The second cycle in execution R is the first cycle in execution
R′′, and so on.

Remark 2.1 For the sake of simple presentation of the correctness proof, when considering fair
executions, we assume that any message that arrives in R without being transmitted in R does so
within O(1) asynchronous cycles in R.

Remark 2.2 (Absence of transient faults implies no need for fairness assumptions) In the
absence of transient faults, no fairness assumptions are required in any practical settings. Also, the
existing non-self-stabilizing solutions (Section 3) do not make any fairness assumption, but they do
not consider recovery from arbitrary transient fault regardless of whether the execution eventually
becomes fair or not.

Lamport [18] defined the happened-before relation as the least strict partial order on events for
which: (i) If steps a, b ∈ R are taken by processor pi ∈ P, a→ b if a appears in R before b. (ii) If
step a includes sending a message m that step b receives, then a→ b. Using the happened-before
definition, one can create a directed acyclic (possibly infinite) graph GR : (VR, ER), where the set of
nodes, VR, represents the set of system states in R. Moreover, the set of edges, ER, is given by the
happened-before relation. In this paper, we assume that the weight of an edge that is due to cases
(i) and (ii) are zero and one, respectively. When there is no guarantee that execution R is fair, we
consider the weight of the heaviest directed path between two system state c, c′ ∈ R as the cost
measure between c and c′.

6

2.4 External building-blocks: self-stabilizing unreliable failure detectors

The concepts of failure patterns and failure detectors have been introduced in [8]. The failure
detector Θ was introduced in [3], and the failure detector HB (heartbeat) has been introduced in [2].
A pedagogical presentation of these failure detectors is given in [20].

Any execution R := (c[0], a[0], c[1], a[1], . . .) can have any number of failures during its run. R’s
failure pattern is a function F : Z+ → 2P , where Z+ refers to an index of a system state in R, which
in some sense represents (progress over) time, and 2P is the power-set of P, which represent the
set of failing nodes in a given system state. F (τ) denotes the set of failing nodes in system state
cτ ∈ R. Since we consider fail-stop failures, F (τ) ⊆ F (τ + 1) holds for any τ ∈ Z+. Denote by
Faulty(F) ⊆ P the set of nodes that eventually fail-stop in the (unbounded) execution R, which has
the failure pattern F . Moreover, Correct(F) = P \ Faulty(F).

We assume the availability of self-stabilizing Θ failure detectors [2], which offer local access to
trusted , which is a set that satisfies the Θ-accuracy and Θ-liveness properties. Let trustedτi denote pi’s
value of trusted at time τ . Θ-accuracy is specified as ∀pi ∈ P : ∀τ ∈ Z+ : (trustedτi ∩Correct(F)) 6= ∅,
i.e., at any time, trusted i includes at least one non-faulty node, which may change over time. Θ-
liveness is specified as ∃τ ∈ N : ∀τ ′ ≥ τ : ∀pi ∈ Correct(F) : trustedτ

′
i ⊆ Correct(F), i.e., eventually

trusted i includes only non-faulty nodes. A self-stabilizing Θ-failure detector appears in [7].
We also assume the availability of a class HB (heartbeat) self-stabilizing failure detector [2],

which has the HB -completeness and HB -liveness properties. Let HBτ
i [j] be pi’s value of the j-

th entry in the array HB at time τ . HB -completeness is specified as ∀pi ∈ Correct(F), ∀pj ∈
Faulty(F) : ∃K : ∀τ ∈ N : HBτ

i [j] < K, i.e., any faulty node is eventually suspected by every
non-failing node. HB -liveness is specified as (1) ∀pi, pj ∈ P : ∀τ ∈ N : HBτ

i [j] ≤ HBτ+1
i [j], and (2)

∀pi, pj ∈ Correct(F) : ∀K : ∃τ ∈ Z+ : HBτ
i [j] > K. In other words, there is a time after which only

the faulty nodes are suspected. The implementation of the HB failure detector that appears in [1]
and [20, Chapter 3.5] uses unbounded counters. A self-stabilizing variation of this mechanism can
simply let pi ∈ P to send HEARTBEAT(HB i[i],HB i[j]) messages to all pj ∈ P periodically while
incrementing the value of HB i[i]. Once pj receives a heartbeat message from pi, it updates the
i-th and the j-th entries in HB j , i.e., it takes the maximum of the locally stored and received
entries. Moreover, once any entry reaches the value of the maximum integer, MAXINT , a global
reset procedure is used (see Section 7).

Remark 2.3 For the sake of simple presentation of the correctness proof, during fair executions, we
assume that cτ ∈ R is reached within O(1) asynchronous cycles, such that ∀pi∈Correct(F) : trustedτi ⊆
Correct(F) and for a given K, ∀pi, pj ∈ Correct(F) : HBτ

i [j] > K, where τ ∈ Z+ is determined by
the Θ- and HB-liveness properties.

3 Non-self-stabilizing URB with and without Failure Detectors

For the completeness’ sake, we briefly review existing URB solutions. The following algorithms are
from [2, 3]. We follow here their description as give in [20] by starting from the simplest model
before considering more advanced ones.

In the absence of communication and node failures, one can implement the urbBroadcast(m)
operation by running {foreach pj ∈ P send MSG(m) to pj} and calling urbDeliver(m) upon pj ’s
reception of m. Algorithm 1 considers a model in which nodes can fail-stop without the possibility
to detect it, but with reliable communications. Node pi broadcasts message m by sending MSG(m)

7

Algorithm 1: URB in the presence of reliable communications; code for pi ∈ P
1 operation urbBroadcast(m) do send MSG(m) to pi;

2 upon MSG(m) arrival from pk begin
3 if first reception of m then
4 {foreach pj ∈ P \ {pi, pk} do send MSG(m) to pj}; urbDeliver(m);

to itself (line 1). Upon the message arrival (line 3), the receiver ignores the message if it got it
before. This is possible due to the requirement of unique message identities (Definition 2.1). If it is
the first reception, the receiver propagates MSG(m) to all other nodes (except itself and the sender)
before calling urbDeliver(m) (lines 4 to 4).

Algorithm 2 considers a system in which at most t < n/2 nodes may crash without the possibility
for detection as well as unreliable communications. Node pi broadcasts message m by sending
MSG(m) to itself (line 5) while assuming it has a reliable channel to itself). Upon the reception of
MSG(m) for the first time (line 7), pi creates the set recBy [m] = {i, k} to contain the identities of
nodes that receive MSG(m), before activating the Diffuse(m) task. In case this is not MSG(m)’s
first arrival (line 8), pi merely adds the sender identity, k, to recBy [m]. The task Diffuse(m) is
responsible for transmitting (and retransmitting) MSG(m) to at least a majority of the nodes before
URB-delivering m (lines 11 to 12).

Algorithm 2: URB in the presence of t < n/2 undetectable node failures; pi’s code

5 operation urbBroadcast(m) do send MSG(m) to pi;

6 upon MSG(m) arrival from pk begin
7 if not the first reception of m then recBy [m]← recBy [m] ∪ {k};
8 else allocate recBy [m]; recBy [m]← {i, k}; activate Diffuse(m) task;

9 do forever begin
10 foreach active Diffuse(m) task do
11 foreach pj ∈ P : j /∈ recBy [m] do send MSG(j, seq) to pj ;
12 if |recBy [m]| ≥ t+ 1) ∧ (pi has not yet URB-delivered m) then urbDeliver(m);

Note that the task Diffuse(m) never stops transmitting messages. Using Θ failure detectors
(Section 2.1), Algorithm 3 avoids such an infinite number of retransmissions by enriching Algorithm 2
as follows. (i) The URB-delivery condition, trusted ⊆ recBy [m], of Algorithm 3’s line 22 substitutes
the condition, |recBy [m]| ≥ t+ 1), of Algorithm 2’s line 12. (ii) Upon the reception of a MSG(m)
message, pi acknowledges the reception via a MSGack(m). Moreover, when pi receives MSGack(m)
from pk, it marks the fact that pk received m by adding k to recBy [m]. (iii) Node pi can eventually
avoid sending MSG(m) messages to a faulty processor pj in the following manner. Processor pi
repeatedly transmits MSG(m) to pj as long as pj is trusted and j /∈ recBy [m] (line 21). Note that,
eventually, either pj will receive MSG(m) and acknowledge it to pi, or in case pj is faulty, j /∈ trusted i
due to the Θ-completeness property. Moreover, due to the strong Θ-accuracy, j /∈ trusted i cannot
hold before pj fails (if it is faulty).

To the end of allowing the implementation of a quiescent URB solution and the unreliable failure
detectors that it relies on, the underlying system needs to satisfy synchrony assumptions that can

8

Algorithm 3: Quiescent URB using Θ-failure detectors; code for pi ∈ P
13 operation urbBroadcast(m) do send MSG(m) to pi;

14 upon MSG(m) arrival from pk begin
15 if not the first reception of m then recBy [m]← recBy [m] ∪ {k};
16 else allocate recBy [m]; recBy [m]← {i, k}; activate Diffuse(m) task;
17 send MSGack(m) to pk;

18 upon MSGack(m) arrival from pk do {recBy [m]← recBy [m] ∪ {k}}
19 do forever begin
20 foreach active Diffuse(m) task do
21 foreach j ∈ trusted \ recBy [m] do send MSG(m) to pj ;
22 if trusted ⊆ recBy [m] ∧ (pi has not yet URB-delivered m) then urbDeliver(m);

be captured by the combined use of the Θ- and HB -failure detectors [20, Chapter 3.5]. Algorithm 4
differs from Algorithm 3 only in the Diffuse(m) task (line 33). Specifically, pi transmits MSG(m)
to pj only when j ∈ recBy [m] (because from pi’s perceptive, pj has not yet received MSG(m)) and
HB [j] has increased since the previous iteration (because from pi’s perspective, pj is not failing).
Algorithm 4 is the basis for our proposal (Section 4).

Algorithm 4: Quiescent URB using Θ- and HB -failure detectors; code for pi ∈ P
23 operation urbBroadcast(m) do send MSG(m) to pi;

24 upon MSG(m) arrival from pk begin
25 if not the first reception of m then recBy [m]← recBy [m] ∪ {k};
26 else allocate recBy [m]; recBy [m]← {i, k}; activate Diffuse(m, [-1, . . . , -1]) task;
27 send MSGack(m) to pk;

28 upon MSGack(m) arrival from pk do {recBy [m]← recBy [m] ∪ {k}}
29 do forever begin
30 foreach active Diffuse(m, prevHB) task do
31 let curHB := HB ;
32 foreach j ∈ trusted \ recBy [m] ∧ prevHB [m][j] < curHB [m][j] do
33 send MSG(m) to pj

34 prevHB [m]← curHB [m];
35 if trusted ⊆ recBy [m] ∧ (pi has not yet URB-delivered m) then urbDeliver(m);

4 Unbounded Self-stabilizing Uniform Reliable Broadcast

Algorithm 5 allows pi ∈ P to urbBroadcast message m in a way the guarantees that all non-failing
nodes raise the event urbDeliver(m) according to the specifications (Section 2.1). The review in
Section 3 can help the reader to understand the proposed solution. We note that the boxed code
lines of Algorithm 5 are relevant only for an extension, which we discuss in Section 6.

Local variables and their purpose (lines 36 to 41). The task specifications assume that
each processor pi ∈ P can URB-broadcast unique messages. To that end, Algorithm 5 maintains

9

maxSeqk(i)seqi

max
for all receivers

minTxObsSi rxObsSk[i]txObsSi[k] maxSeqk(i)-bufferUnitSize

max
per sender pi

maxmin
for all receivers max

per receiver pk

rmaxSeq(i)

rmaxSeq(i)-1
…

rrxObsS[i]+2

rrxObsS[i]+1

pk maintains per sender

rseq

rseq-1

…

rminTxObsS-1

rminTxObsS

pi maintains for all receivers

assert: minTxObsS ≤ seqi ≤
minTxObsSi+ bufferUnitSize

receiver
pk

sender
pi

MSG(•,k,txObsS[k]+1)

MSGack(•)

Figure 2: The self-stabilizing flow-control scheme between sender pi and receiver pk. The arrays on
the figure sides represent the portion of peers’ buffer variables that includes records rs, where s is a
sequence number of a message sent from pi to pk. The single-line arrows (dashed or not) and the
text next to them represent a logical update, e.g., x

max←−− y stands for x ← max{x, y}. The text
that appears below the arrow clarify whether a single variable aggregates these update or different
entries in the array store the updated values. The dashed arrows refer to updates that require
communication between pi and pk. The double-line arrows and the text above them depict MSG
and MSGack messages.

the message index number, seq, that it increments upon urbBroadcast invocations.
The processors store all the currently processed messages as records in the variable buffer . Each

record includes the following fields: (i) msg, which holds the URB message, (ii) id, which is the
identifier of the node that invoked the URB-broadcast, (iii) seq, which is the message index number,
(iv) delivered , which is a Boolean that holds False only when the message is pending delivery,
(v) recBy , which is a set that includes the identifiers of nodes that have acknowledged msg, and
(vi) prevHB , which is a value of the HB failure detector (Section 2.1) that Algorithm 5 uses for
deciding when to transmit (and re-transmit) msg. Our proof shows that every node store at most
n · bufferUnitSize records, where bufferUnitSize can be set according to the available local memory.
When accessing records in buffer , we use a query-oriented notation, e.g., (•, id = j, seq = s, •) ∈
buffer considers all buffered records that their id and seq fields hold the values j and s, respectively.

A self-stabilizing flow-control scheme for bounding buffer . Algorithm 5 bounds buffer
using a flow-control technique. We say a record, with sequence number s, is obsolete if it had
received acknowledgments from all trusted nodes and then it was URB-delivered. Moreover, since
pi needs to remove obsolete records from its buffer, we also define that any record with a sequence
number lower than s to be also obsolete. This way, pk can keep track of all the obsolete records it has
deleted using a single counter rxObsSk[i], per sender pi, which stores the highest sequence number
of records that pi considers to be obsolete. The array txObsS i[] facilitates the ability of sender (pi)
to control its sending flow since it can receive rxObsSk[i] from pk and store it at txObsS i[k]. (Note
that we denote variable X’s value at node pi by Xi.) The flow-control mechanism can simply defer
the processing a new URB-message when pk’s message sequence number minus the minimum value
stored in txObsS [] (that arrived from a node that pk trusts) is smaller than the maximum number
of records, bufferUnitSize, that a receiver can buffer for each node.

We use Figure 2 to describe in detail the flow-control scheme. The receiver pk repeatedly sends to

10

the sender pi the maximum pi’s sequence number, maxSeqk(i), that it stores in its buffer, see the top
dashed left arrow. This allows pi to make sure that seqi is greater than any sequence number in the
system that is associated with pi, as we show in Theorem 5.2’s Argument (3). The buffer of pk cannot
store more than bufferUnitSize with messages from pi. Therefore, pk stores only messages that their
sequence numbers are between maxSeqk(i) and maxSeqk(i) − bufferUnitSize and reports to pi the
highest sequence number, rxObsSk[i], of its obsolete records that are associated with pi, see the lowest
dashed arrow. The latter stores this value in rxObsS i[k] and makes sure it has the latest value from pk
by sharing rxObsS i[k] with it. The sender pi also uses rxObsS i[k] for bounding buffer i. Specifically,
minTxObsSi() aggregates the minimum value in rxObsS i[k] for any trusted receiver pk (line 46). Using
minTxObsSi(), the sender pi can assert that minTxObsSi() ≤ seqi ≤ minTxObsSi() + bufferUnitSize
and buffer i includes all the records that their sequence numbers are between minTxObsSi() and seqi
(line 55). Since, due to a transient fault, pi’s might indicate the reception of acknowledgment for a
message that pk’s state shows that it has never received, pi repeatedly resends the message that has
the sequence number s, such that s = rxObsS i[k] + 1 (line63), see the double line arrows between pi
and pk in Figure 2.

A detailed description of Algorithm 5. Upon the invocation of the urbBroadcast(m) operation,
Algorithm 5 allows node pi to process m without blocking as long as the flow-control mechanism can
guarantee the available space at all trusted receivers (line 47). Such processing is done by creating
a unique operation index, seq, and calling update().

The procedure update(m, j, s, k) receives a message, m, a unique message identifier, which
is the pair (j, s) that includes the sender identifier (j) and the sequence number (s), and the
identifier of the forwarding processor, pk. The procedure considers first the case in which buffer i
does not include a record with the identifier (j, s). In this case, pi adds to buffer i the record
(m, j, s,False, {j, k}, [-1, . . . , -1]) (line 51), which stands for the message itself and its unique identifier,
as well as stating that it was not yet been delivered but that the identifiers of the sending (j) and
forwarding (k) processors appear in recBy . Moreover, the record holds a vector that is smaller than
any value of the HB failure detector. For the case in which buffer i already includes a record with
the identifier (j, s), pi makes sure that recBy includes the identifiers of the sending and forwarding
nodes (line 52).

Algorithm 5 includes a do forever loop (lines 53 to 65) that: (i) removes stale information
(lines 54 to 58), (ii) processes URB messages (lines 59 to 64) and (iii) gossips information that is
needed for flow-control and recovery from arbitrary transient faults (line 65).

(i) The removal of stale information includes the emptying the buffer whenever there are records
for which the msg field is ⊥ or when there are two records with the same message identifier
(line 54). Lines 55 to 57 implement recovery strategies that facilitate the bounds on the buffer
size. Algorithm 5 tests for the case in which, due to an arbitrary transient fault, the sender does
not store all of its messages such that their sequence number is between mS+1 and seq (line 55),
where mS := minTxObsS() is the smallest obsolete sequence number that pi had received from a
trusted receiver. The recovery from such transient violations is done by allowing the sender to send
bufferUnitSize URB messages without considering the space available on the receiver-side. Similarly,
on the receiver-side, Algorithm 5 makes sure that the gap between the largest obsolete record,
rxObsS [k] (of pk’s messages) and the largest buffered sequence number, maxSeq(k), is not larger
than bufferUnitSize (line 56). Algorithm 5 updates the receiver-side counter that stores the highest
obsolete message number per sender (line 57). To the end of bounding the memory use, pi keeps in
buffer i messages that it has sent but for which it has not yet received an indication from all trusted

11

Algorithm 5: Self-stabilizing quiescent uniform reliable broadcast; code for pi ∈ P
36 global constants: bufferUnitSize; /* max records per node in buffer */

37 local variables: (Initialization is optional in the context of self-stabilization.)
38 seq := 0; /* message index num. */

39 buffer := ∅; /* set of (msg, id, seq, delivered , recBy , prevHB) records */

40 rxObsS [1..n] := [0, . . . , 0]; /* highest reciver’s obsolete seq per node */

41 txObsS [1..n] := [0, . . . , 0]; /* highest sender’s obsolete seq per node */

42 next[1..n] := [1, . . . , 1] ; /* next-to-deliver message indices; one entry per sender */

43 interface required trusted and HB ; /* see Sec. 2.1 */

44 macro obsolete(r) := (rxObsS [r.id] + 1 = r.seq ∧ trusted ⊆ r.recBy ∧ r.delivered);

45 macro maxSeq(k) := max({s : (•, id = k, seq = s, •) ∈ buffer} ∪{next[k]− 1});

46 macro minTxObsS() := min{txObsS [k] : k ∈ trusted};
47 operation urbBroadcast(m) do {wait(seq < minTxObsS() + bufferUnitSize); seq ← seq + 1;

update(m, i, seq, i); } ; /* returns the transmission descriptor */

48 procedure update(m, j, s, k) begin
49 if s ≤ rxObsS [j] then return ;
50 if (•, id = j, seq = s, •) /∈ buffer ∧m 6= ⊥ then
51 buffer ← buffer ∪ {(m, j, s,False, {j, k}, [-1, . . . , -1])};
52 else foreach (•, id = j, seq = s, •, recBy = r, •) ∈ buffer do r ← r ∪ {j, k};

53 do forever begin
54 if (∃r, r′ ∈ buffer : r.msg= ⊥ ∨ (r 6= r′ ∧ ((r.id, r.seq)= (r′.id, r′.seq)))) then buffer ← ∅;
55 if ¬((mS ≤ seq ≤ mS+bufferUnitSize)∧({mS + 1, . . . , seq}⊆ {s : (•, id = i, seq = s, •)∈ buffer})

where mS := minTxObsS() then txObsS []← [seq, . . . , seq];

56 foreach pk ∈ P do (rxObsS [k] ,next[k]) ← (max{rxObsS [k],maxSeq(k)− bufferUnitSize},

max{next[k], rxObsS [k]+1});

57 while ∃r ∈ buffer : obsolete(r) do rxObsS [r.id]← rxObsS [r.id] + 1;
58 buffer ← {(•, id = i, seq = s, •) ∈ buffer : minTxObsS() < s}∪

{(•, id = k, seq = s, •) ∈ buffer : pk ∈ P ∧ ((rxObsS [k] < s ∧maxSeq(k)− bufferUnitSize ≤ s))};
59 foreach (msg = m, id = j, seq = s, delivered = d, recBy = r, prevHB = e) ∈ buffer do

60 if (trusted ⊆ r) ∧ (¬d) ∧s = next[k] then

61 urbDeliver(m); d← True; next[k]← next[k]+1

62 let u := HB ;
63 foreach pk ∈ P : (k /∈ r ∨ (i = j ∧ s = txObsS [k] + 1)) ∧ (e[k] < u[k]) do
64 e[k]← u[k]; send MSG(m, j, s) to pk; /* piggyback lines 64 and 65 */

65 foreach pk ∈ P do send GOSSIP(maxSeq(k), rxObsS [k], txObsS [k]) to pk;

66 upon MSG(m, j, s) arrival from pk do {update(m, j, s, k); send MSGack(j, s) to pk;}
67 upon MSGack(j, s) arrival from pk do {update(⊥, j, s, k);}
68 upon GOSSIP(seqJ, txObsSJ , rxObsSJ) arrival from pj do {(seq, txObsS [j],

rxObsS [j])← (max{seqJ, seq},max{txObsSJ , txObsS [j]},max{rxObsSJ , rxObsS [j]});}

12

receivers that they consider this message to be obsolete. It also keeps all non-obsolete messages
(regardless of their sender).

(ii) Node pi processes records by testing the field recBy of any not delivered message (line 59).
The message is delivered when recBy encodes an acknowledgment from every trusted node (line 61).
Processor pi then marks the record as a delivered one and samples the HB failure detector (line 62).
This sample is used to decide when a transmission (or retransmission) of a URB message is needed
(line 63) in case an acknowledgment is missing or because the message sequence number is greater
by one than the largest obsolete message number known to the sender. These messages are received
and processed in line 66, which includes acknowledging the message arrival. These acknowledgments
are processed in line 67.

(iii) At the end of the do-forever loop, pi gossips to every pk control information about the
maximum seq value that pi stores in a pk record as well as pk’s obsolete records (lines 65 and 68).
The former value allows pk to maintain the correctness invariant, i.e., seqk is not smaller than any
other seq value in the system that is associated with pk. The latter value allows pk to control the
flow of URB broadcasts according to the available space in buffer i.

5 Correctness

This section brings the correctness proof of Algorithm 5. Theorem 5.2 demonstrates recovery after
the occurrence of the last arbitrary transient fault. Theorem 5.3 demonstrates that Algorithm 5
satisfies the task specifications (Section 2.1).

5.1 Needed definitions

Definition 5.1 presents the necessary conditions for demonstrating that Algorithm 5 brings the
system to a legal execution (Theorem 5.2).

Definition 5.1 (Algorithm 5’s consistent sequence and buffer values) Let c be a system
state and pi ∈ P a non-faulty processor. Suppose that (i) (@r, r′ ∈ buffer : r.msg = ⊥ ∨ (r 6=
r′ ∧ ((r.id, r.seq) = (r′.id, r′.seq)))), ((mS ≤ seqi ≤ mS + bufferUnitSize) ∧ (mS+1, . . . , seqi} ⊆
{s : (•, id = i, seq = s, •) ∈ buffer i}), ∀pk ∈ P : (maxSeqi(k) − rxObsS i[k]) ≤ bufferUnitSize,
@r ∈ buffer i : obsolete(r), ∀(•, id = i, seq = s, •) ∈ buffer i : mS < s, ∀(•, id = k, seq = s, •) ∈
buffer i : pk ∈ P ∧ rxObsS i[k] < s ∧maxSeqi(k) ≤ (s+ bufferUnitSize), where mS := minTxObsSi().
Moreover, (ii) seqi is greater than or equal to any pi’s sequence values in the variables and fields
related to seq (including pi’s records in bufferk, where pk ∈ P is non-failing, and incoming messages
to pk) and ∀pj ∈ P : sMj ≤ rxObsS j [i], where sMj is either txObsS i[j] or the value of the fields
txObsSJ and rxObsSJ in a GOSSIP(•, txObsSJ , •) message in transit from pj to pi, and respectively,
GOSSIP(•, rxObsSJ) message in transit from pi to pj. Also, (iii) ∀k ∈ trusted i : |{(•, id = i, •) ∈
bufferk}| ≤ bufferUnitSize ∧ seqi ≤ minTxObsSi() + bufferUnitSize. In this case, we say that pi’s
values in the variables and fields related to seq’s sequence values and buffer are consistent in c.

We note that not every execution that starts from a system state that satisfies Definition 5.1 is a
legal execution. For example, consider a system with P = {pi, pj} and an execution R, such that in
its starting state it holds that buffer i = {(m, i, 1, •)} and buffer j = {(m′, i, 1, •)}, such that m 6= m′.
The delivery of m and m′ violates Definition 2.1’s validity requirement because no legal execution

13

has R as a suffix. Theorem 5.3 circumvents this difficulty using Definition 5.2. Thus, definitions 5.1
and 5.2 provide the necessary and sufficient conditions for demonstrating self-stabilization.

Definition 5.2 (Complete execution with respect to urbBroadcast invocations) Let R be an
execution of Algorithm 5. Let c, c′′ ∈ R denote the starting system states of R, and respectively, R′′,
for some suffix R′′ of R. We say that message m is completely delivered in c if (i) the communication
channels do not include MSG(msg = m, •) messages (or MSGack messages with a message identifier
(id, seq) that refers to m), and (ii) for any non-failing pj ∈ P and r = (msg = m, •) ∈ buffer j, it
holds that r.delivered = True and for any non-failing pk ∈ P, we have k ∈ r.recBy. Suppose that
R = R′ ◦ R′′ has a suffix R′′, such that for any urbBroadcast message m that is not completely
delivered in c′′, it holds that m either does not appear in c (say, due to an urbBroadcast(m) invocation
during the prefix R′) or it is completely delivered in c. In this case, we say that R′′ is complete with
respect to R’s invocations of urbBroadcast messages. When the prefix R′ is empty, we say that R is
complete with respect to urbBroadcast invocations.

Theorems 5.2 and 5.3 consider Definition 5.3. For the sake of simple presentation, Definition 5.3
relies on the specifications’ assumption (Section 2.1) that every broadcasted message is unique (even
without an explicit assignment of the message identifier (id, seq) to m).

Definition 5.3 (The diffuse() predicate) Let pi ∈ P and c ∈ R be a system state. The predicate
diffusei(m) holds in c if, and only if, ∃(msg = m, •, delivered = False, •) ∈ buffer i.

5.2 Basic facts

Both theorems 5.2 and 5.3 use Lemma 5.1.

Lemma 5.1 Let R be an execution of Algorithm 5 and pi, pj ∈ P be two non-failing processors.
Suppose that in every system state c ∈ R, diffusei(m) holds, such that (msg 6= ⊥, •, recBy = r, •) ∈
buffer i holds, but j ∈ r does not. (i) Processor pi sends, infinitely often, the message MSG(m, j, s)
to pj and pj acknowledges, infinitely often, via the message MSGack(j, s) to pi. (ii) The reception
of any of these acknowledgments guarantees that j ∈ r holds within cost measure of 2 (Section 2.3).
(iii) Suppose that R is fair, then invariants (i) and (ii) occur within O(1) asynchronous cycles.

Proof. Invariants (i) and (ii). Since j ∈ Correct and j /∈ r in c, processor pi sends the
message MSG(m, j, s) to pj infinitely often in R (due to the do-forever loop, lines 59 and 64 as well
as HB -liveness and this lemma’s assumptions). Moreover, pj receives pi’s message (line 66), and
acknowledges it, infinitely often, so that pi receives pj ’s acknowledgment (line 67), infinitely often,
while making sure that j is included in r (line 52). Since a single round-trip is required for the
latter to hold, the cost measure is 2.

Invariant (iii). This is implied by Remark 2.3 applied to the proof of Invariant (ii). �

5.3 The convergence property

Theorem 5.2 shows that the system reaches a state that satisfies Definition 5.1.

Theorem 5.2 (Convergence) Let R be a fair execution of Algorithm 5 that starts in an arbitrary
system state. Within O(bufferUnitSize) asynchronous cycles, the system reaches a state, c ∈ R, after
which a suffix R′ of R starts, such that R′ is complete with respect to the urbBroadcast invocations
in R. Moreover, seq and buffer are consistent in any c′ ∈ R′ (Definition 5.1).

14

Proof. The proof is implied by arguments (1) to (6).

Argument (1): The case in which MSG(m, •) (or its correspondent MSGack(•)) appears in a
communication channel at R’s starting system state. Suppose that in R’s starting system state, it
holds that MSG(m, •) appears in an incoming communication channel to pk. Since R is fair, then by
Remark 2.1 it holds that within O(1) asynchronous cycles, MSG(m, •), or respectively, MSGack(•)
arrives at its destination, pk. For the case of MSG(m, •), this arrival results in the execution of
line 66 and then line 51 if m’s record was not already in bufferk. For the case of MSGack(•) and
(m, •) ∈ bufferk, line 67 has a similar effect. Moreover, by the code of Algorithm 5, the case of
MSGack(•) and (m, •) /∈ bufferk does not change pk’s state. Therefore, without loss of generality,
the rest of the proof can simply focus on the case in which R’s starting system state, it holds that
∃pk∈P : (m, •) ∈ bufferk. Note that by similar arguments, we can also consider the case in which
the communication channels include message MSGack with a message identifier (id, seq) that refers
to m.

Argument (2): Definition 5.1’s Invariant (i) holds for the case in which ∃pk∈P : (m, •) ∈ bufferk in
R’s starting system state. Within O(1) asynchronous cycles, pk runs a complete iteration of its do
forever loop (lines 53 to 64). Invariant (i) is implied by lines 54 to 58.

Argument (3): seqi is greater than or equal to any pi’s sequence values in the variables and fields
related to seq in c′. Within O(1) asynchronous cycles, every message that was present in a
communication channel in R’s starting system state arrives at the receiver. Therefore, without loss
of generality, the proof can focus on the values of seqi at the non-failing nodes pi, pk ∈ P. Other
than in seqi, every sequence value that is related to pi can only be stored in records of the form
(•, id = i, seq = s′, •) that are stored in bufferk. Suppose that in R’s starting system state, it holds
that s′ > seqi. By lines 65 and 68, within O(1) asynchronous cycles, pk gossips sk ≥ s′ to pi and
the latter updates seqi upon reception. The argument proof is complete because only pi (line 47)
can introduce new seq values that are associated with pi, and thus, the argument invariant holds
for any system state in R′.

Argument (4): Definition 5.1’s Invariant (ii) holds in c′. The case of seq values is covered by
Argument (3). Within an asynchronous cycle, every message arrives at the receiver. Therefore,
without loss of generality, the proof can focus on the values of sMj at the non-failing node pi ∈ P.
Suppose that in R’s starting system state, the predicate txObsS i[j] ≤ rxObsS j [i] does not hold
for some non-failing pj ∈ P : j ∈ trusted i. By lines 65 and 68, within O(1) asynchronous cycles,
pj gossips rxObsS j [i] to pi and the latter updates txObsS i[j] upon reception as well as pi gossips
txObsS i[j] to pj and the latter updates rxObsS j [i] upon reception. Thus, Definition 5.1’s Invariant
(ii) holds is any system state that follows.

The rest of the proof assumes, without loss of generality, that Definition 5.1’s invariants (i) and
(ii) hold throughout R. Generality is not lost due to arguments (1) to (4).

Argument (5): ∀k ∈ trusted i : |{(•, id = i, •) ∈ bufferk}| ≤ bufferUnitSize holds in c′ (first part of
Definition 5.1’s Invariant (iii)). Let pi, pk ∈ P be two non-faulty nodes. For the case of pk’s
records in buffer i, Definition 5.1’s Invariant (i) says that ∀(•, id = k, seq = sk, •) ∈ buffer i : max{s′k :
(•, id = k, seq = s′k, •) ∈ buffer i} ≤ (sk + bufferUnitSize). In other words, the largest sequence
number, max{s′k : (•, id = k, seq = s′k, •) ∈ buffer i}, of a pk’s records in buffer i minus bufferUnitSize
must be smaller than sk of any pk’s records in buffer i.

Argument (6): seqi < minTxObsSi() + bufferUnitSize holds in c′ (second part of Definition 5.1’s
Invariant (iii)). Let c ∈ R and xc = (seqi − minTxObsS()). Assume, towards a contradiction,

15

that xc ≥ bufferUnitSize for at least O(bufferUnitSize) asynchronous cycles. Let Ac = ∪k∈trustedi
{r ∈

bufferk : ¬obsoletek(r) ∧ r.id = i} and Bc = ∪k∈trustedi
{r ∈ buffer i : r.id = i ∧ txObsS i[k] < r.seq}

as well as rec ∈ Ac and rec′ ∈ Bc be the records with the smallest sequence number (among all
the records with id = i) that pk, and respectively, pi stores in c. We start the proof by showing
that, within O(1) asynchronous cycles, the system reaches a state c′ ∈ R for which rec /∈ Ac′ and
rec′ /∈ Bc′ hold. We then show that xc′ < bufferUnitSize holds.

Showing that rec /∈ Ac′ because obsolete(rec) holds. Let pi ∈ P be a non-faulty node. Suppose
that ∃pk ∈ P : (•, id = i, delivered = dk, recBy = rk, •) ∈ bufferk ∧ k ∈ trusted i ∧ dk = False holds
for some value of rk in c. For any pj ∈ P for which j ∈ trustedk holds throughout R’s first O(1)
asynchronous cycles, we know that the system reaches, within O(1) asynchronous cycles, a state in
which j ∈ rk is true (invariants (i) and (ii) of Lemma 5.1). Once ∀j ∈ trustedk : j ∈ rk holds, pk
assigns True to dk (line 61). Thus, rec /∈ Ac′ holds within O(1) asynchronous cycles in R. Moreover,
obsolete(rec) holds due to the choice of rec as the one with the smallest sequence number.

Showing that rec′ /∈ Bc′. As long as rec′ ∈ Bc, node pi sends MSG(rec′.msg, rec′.id, rec′.seq) to
pk infinitely often (line 64). Within an asynchronous cycle, pk receives this MSG message. Lines 66
and 49 imply that either (rec′.msg, rec′.id, rec′.seq, •) ∈ Ac′ or rec′.seq ≤ rxObsSk[i]. Within O(1)
asynchronous cycles, (rec′.msg, rec′.id, rec′.seq, •) /∈ Ac′ and obsolete(rec) hold (due the rec /∈ Ac′
case) as well as rxObsSk[rec′.id] ≥ rec′.seq (line 57). Moreover, by Argument (4)’s proof, rec′ /∈ Bc′
since txObsSk[rec

′.id] ≥ rec′.seq holds.

Showing that xc′ < bufferUnitSize. Due to the assumption at the start of this proof, throughout R’s
first O(bufferUnitSize) asynchronous cycles, pi does not increment seqi and call update() (line 47).
Thus, on the one hand, no new pi’s record is added to bufferk throughout R’s first O(bufferUnitSize)
asynchronous cycles (due to the assumption that appears in the start of this case), while on the
other hand, within O(1) asynchronous cycles, the system reaches a state in which either pi stops
including pk in trusted i or it removes at least one record from Ac and Bc. The latter can repeat
itself at most bufferUnitSize times due to Argument (5). This completes the proof of the argument
and the proof of the theorem. �

5.4 The closure property

Theorem 5.3 considers system executions that reach suffixes, R, that satisfy definitions 5.1 and 5.2.
Theorem 5.3 then shows that R satisfies Definition 2.1, i.e., R ∈ LEURB is a legal execution.

Theorem 5.3 (Closure) Let R be an execution of Algorithm 5 that is complete with respect to
urbBroadcast invocations (or R is a suffix of an execution R = R′ ◦R for which R is complete with
respect to the invocation of urbBroadcast messages in R, cf. Definition 5.2) and seq’s sequence
values are consistent in c ∈ R (Definition 5.1). Algorithm 5 demonstrates in R a construction of the
URB communication abstraction. Moreover, each invocation of the operation urbBroadcast() incurs
O(n2) messages and has the cost measure of 2 (Section 2.3).

Proof. We note that the property of validity holds with respect to Algorithm 5 due to this theorem’s
assumption about R’s completeness, which can be made due to Theorem 5.2. We observe that
Algorithm 5 guarantees, within O(1) asynchronous cycles, the property of integrity since only
non-delivered messages can be delivered (line 61) and once delivered they cannot be delivered again
(line 62).

16

The proof demonstrates claims 5.4 and 5.5 before showing the termination and quiescent
properties. Let R be an execution of Algorithm 5. We note that no processor removes the processor
identity ` from the set recBy throughput R.

Claim 5.4 Let pi, pj ∈ P be two non-faulty nodes. The fact that diffusei(m) (Definition 5.3) holds
for every system state c ∈ R implies that eventually, diffusej(m) holds in c′ ∈ R.

Proof of claim. The proof is implied by arguments (2) and (3), which consider Argument (1).

Argument (1): Only due to lines 47 and 66 can diffusei(m) hold during R. Only line 51 can
add (m, k, s, •) : m 6= ⊥ to buffer i. This can only happen due to an earlier invocation of operation
urbBroadcast(m) (line 47) or MSG message arrival (line 66).

Argument (2): Suppose that R includes a system state c′′ in which (m, k, s, r, •) ∈ buffer i : m 6=
⊥ ∧ j ∈ r holds. Then, diffusej(m) holds in R (possibly before c′′). Processor pi adds j to
the recBy field value, r, only due to the reception of MSG(m) (or it’s correspondent MSGack(•))
from pj (lines 66 and 67). By the theorem’s assumption that m does not appear in R’s starting
system state, it follows that pj receives MSG(m). Immediately after the first reception, it holds that
(m, k, s, •) ∈ buffer j : m 6= ⊥ in c′ ∈ R (due to the execution of line 66 and then line 51). Thus, the
predicate diffusej(m) holds in c′.

Argument (3): Suppose that R includes no system state in which (m, k, s, r, •) ∈ buffer i : m 6=
⊥ ∧ j ∈ r holds. Then, the predicate diffusej(m) holds eventually. By the assumption that pj
is non-faulty and the HB -liveness property (Section 2.1), eventually, pi does not suspect pj and
thus, it follows that pi sends infinitely often the message MSG(m) to pj (line 65). Due to the fair
communication assumption, pj receives MSG(m) infinitely often from pi. Immediately after the
first time in which pj receives MSG(m), it holds that (m, k, s, •) ∈ buffer j : m 6= ⊥ in c′ ∈ R (due
lines 66 and 51). Thus, the predicate diffusej(m) holds in c′. 2

Claim 5.5 Suppose that for any non-faulty pi ∈ P, there is a system state ci ∈ R, after which
diffusei(m) holds. Eventually, in R, any non-faulty pj ∈ P raises urbDeliverj(m).

Proof of claim. Note that this claim’s assumption that diffusei(m) always holds after ci implies
that eventually (m, •) is always included in the foreach loop of line 59. Moreover, pj raises the
event urbDeliverj(m) only when the if-statement condition in line 61 holds. By diffuse()’s definition,
∃(msg = m, •, delivered = False, recBy = r, •) ∈ buffer i for some value of r in every system state in
R. The rest of the proof shows that trusted i ⊆ r holds eventually.

Argument (1): (m, •, recBy = ri, •) ∈ buffer i ∧ Correct ⊆ ri holds. Lemma 5.1 and the claim’s
assumption that diffusei(m) holds in every system state after ci imply that j ∈ ri holds eventfully.
Using arguments that are symmetric to the ones above, also i ∈ rj : (m, •, recBy = rj , •) ∈ buffer j
holds eventfully. Thus, Correct ⊆ ri holds eventually.

Argument (2): (m, •, recBy = ri, •) ∈ buffer i ∧ trusted i ⊆ ri holds. By the Θ-liveness property,
trusted i ⊆ Correct eventually. From Argument (1), we have that the system eventually reaches a
state after which trusted i ⊆ recBy i always holds. 2

Proof of the termination property. Let pi, pj ∈ P be two non-faulty nodes. The proof is
implied by the following arguments (1) and (2) as well as Argument (6) of Lemma 5.2.

Argument (1): pj raises urbDeliverj(m) eventfully when pi invokes urbBroadcasti(m). Since
i ∈ Correct , the invocation of urbBroadcasti(m) makes sure that (m, •) ∈ buffer i in a way that

17

implies diffusei(m) (by lines 47 and 51 since by Theorem 5.2’s Argument (3), line 52 is not executed
in steps that invoke urbBroadcasti(m), which increment seqi). Since diffusei(m) holds, diffusek(m)
holds eventually for any non-failing pk ∈ P (Claim 5.4). This implies that pj invokes urbDeliver(m)
(Claim 5.5).

Argument (2): Suppose that a (correct or faulty) processor pk invokes urbDeliverk(m). Any non-
failing node invokes urbDeliver(m). Immediately before pk invokes urbDeliverk(m), it holds that
(m, •, recBy = rk, •) ∈ bufferk ∧ trusted i ⊆ rk (line 61). Due to the Θ-accuracy property, ∃j ∈
trustedk ∩Correct . By this theorem’s assumption about R, the only way in which j ∈ trustedk ⊆ rk
can hold, is if, before pk invokes urbDeliverk(m), node pj had received MSG(m, •) (or its corresponding
acknowledgment, MSGack(•)) that was sent by pk (due to reasons that are similar to the ones
that appear in the proof of Argument (2) of Claim 5.4). Upon pj ’s first reception of MSG(m, •)
(or MSGack(•)), processor pj stores m, such that diffusej(m) holds immediately after (by similar
reasons that appear in the proof of Argument (1)). Since diffusej(m) holds, then diffuse`(m)
holds eventually for any non-failing processor p` ∈ P (Claim 5.4) and p` invokes urbDeliver`(m)
(Claim 5.5).

Proof of the quiescence property. In the context of self-stabilization [12], quiescence is
demonstrated by showing that any call to urbBroadcast(m) can result only in a finite number of
MSG(m, •) (or corresponding MSGack(•)) messages. Note that the reception of a MSGack() does
not result in the sending of a message and the sending of a MSGack() is always due to the reception
of a MSG(m, •) message. Moreover, processors that fail eventually, can only send a finite number of
messages. Thus, without loss of generality, the proof focuses on the sending of MSG(m, •) messages
by processors that never fail. The non-faulty pi ∈ P can send MSG(m, •) message to pk ∈ P only
when rec = (msg = m, id = j, seq = s, delivered , recBy = r, prevHB = e) ∈ buffer i : (k /∈ r ∨ (i =
j ∧ s = txObsS i[k] + 1)) ∧ (e < u[k]) holds (lines 59 and 64), where u = HB i. In other words, once
the system reaches c ∈ R for which j ∈ r holds and rec is obsolete, pi stops sending MSG(m, •) to
pj . If this occurs for any j ∈ Correct , the proof is done. Thus, arguments (1) to (3) assume that
the system does not reach c.

Argument (1): The case of j /∈ Correct. Within a finite time, HB i[j] does not increase (the
HB -completeness property). Thus, the system reaches within a finite time a suffix for which in any
state the predicate (e[j] < u[j]) (line 64) does not hold, where u = HB i. Thus, pi does not send
MSG(m, •) messages to pj during that suffix.

Argument (2): The case of j ∈ Correct and ¬(i = j ∧ s = txObsS i[k] + 1). Suppose, forwards a
contradiction, that pi never stop sending MSG(m, •) messages to pj or that pj never stop sending
(the corresponding) MSGack(•) messages to pi. By Invariant (ii) of Lemma 5.1, pi adds j to
ri : (msg = m, •, recBy = ri, •) ∈ buffer i. By Algorithm 5’s code, pi never removes j from ri, and
thus, the predicate j ∈ ri remains true forever. This contradicts the assumption made in the start
of this case, and thus, the quiescence property holds for Algorithm 5.

Argument (3): The case of j ∈ Correct and (i = j ∧ s = txObsS i[k] + 1). The proof here
is by showing that pi eventually stores a higher value in txObsS i[k] and thus this argument is
true due to Argument (2). Assume, towards a contradiction, that txObsS i[k] = s − 1 always
holds. Since the transmission conditions (line 63) always holds, the sender pi sends MSG(m, j, s, •)
infinitely often to pk. Due to the communication fairness assumption, pk eventually receives
MSG(m, j, s, •) and makes sure that bufferk stores m’s record (line 66) or that s ≤ rxObsSk[i]
(line 49). It turns out that even when only the former case holds, eventually the latter case
holds. Specifically, by Invariant (ii) of Lemma 5.1 and the proof of the URB-termination property,

18

∃rec = (msg = m, id = j, seq = s, delivered = d, recBy = r, •) ∈ bufferk : d = True ∧ trustedk ⊆ rk
and thus obsolete(rec) holds eventually. But then, it must be that rxObsSk[i] ≥ s, which in turn
implies that txObsS i[k] ≥ s (due to lines 65 and 68 and the communication fairness assumption).
This is a contradiction with this case assumption that txObsS i[k] = s− 1. Thus, the argument and
Algorithm 5 is quiescent. �

6 Extension: FIFO Message Delivery

We discuss an extension for Algorithm 5 for ensuring “First-in, First-out” (FIFO) message delivery.
This extension is marked by Algorithm 5’s boxed code lines. Our solution uses a well-known
approach, which can be found in [15, 20]. For the sake of completeness, we bring the definition of
the FIFO-URB abstraction before discussing the implementation details and proof. The abstraction
includes the operation fifoBroadcast(m) and the event fifoDeliver(m). Definition 6.1 requires
FIFO-URB-broadcast messages to be delivered by their sending orders (per individual sender).

Definition 6.1 (FIFO Uniform Reliable Broadcast [20]) Let R be a system execution. We
say that the system demonstrates in R a construction of the FIFO-URB communication abstraction
if URB-validity, URB-integrity, and URB-termination requirements are satisfied (Definition 2.1) as
well as the following property.

• FIFO message delivery. Suppose that pi ∈ P takes a step that includes a call to
fifoBroadcast(m) and calling to fifoBroadcast(m′) (possibly in another step). No pj ∈ P raises
the event fifoDeliver(m′) before taking raising the event fifoDeliver(m) (possibly in another
step).

Our solution (Algorithm 5 including the boxed code lines) considers a well-known approach for
ensuring the FIFO message delivery, which can be found in [15, 20]. We associate each message
arrival with a predicate, cf. the boxed part of the if-statement condition of line 60, which is based
on Definition 6.1’s requirement. The predicate uses the array next[1..n] (line 42), which holds at
the j-th entry the sequence number of the next-to-be-delivered message from pj that receiver pi
is allowed to FIFO-deliver. As long the predicate does not hold, the message is buffered by the
receiving end. The receiver can then FIFO deliver a pending message as soon as Definition 6.1-based
predicate holds. The proposed self-stabilizing solution advances the one in [15, 20] with respect to
recovery after the occurrence of transient faults, which requires also the use of bounded buffer size.

Lines 45, 56, 65 and 68 help to deal with the case in which node pi is a receiver that holds
at nexti[j] a sequence number that is higher than the sender’s sequence number, seqj . This
situation can only occur due to a transient fault and the concern here is that pi might omit up to
nexti[j]− seqj messages broadcast by pj . Algorithm 5 overcomes such concerns by gossiping to the
sender’s next-to-be-delivered sequence number, cf. the boxed part of line 45’s code, which is called
in line 65. Upon the arrival of such gossip messages from pj to pj , node pj can assure that seqj is
not smaller then nexti[j]. Moreover, line 56 helps pi to make sure that nexti[j] does not refer to an
obsolete message, i.e., nexti[j] ≤ rxObsS i[j].

Theorem 6.1 Algorithm 5 is a self-stabilizing construction of a FIFO uniform reliable broadcast
communication abstraction in any system in which URB can be built. Moreover, the operation of
FIFO uniform reliable broadcast has URB’s cost measures.

19

Proof. Claims 6.2 and 6.3 demonstrate the proof.

Claim 6.2 (Convergence) Let R be a fair execution of Algorithm 5 that starts in an arbitrary
system state. Within O(1) asynchronous cycles, the system reaches a state, c ∈ R, after which a
suffix R′ of R starts, such that R′ is complete with respect to the fifoBroadcast invocations in R.
Moreover, seq and buffer are consistent in any c′ ∈ R′ (Definition 5.1).

Proof of claim. The proof is along the same lines as the one of Theorem 5.2 with a minor revision
of Argument (3). There is a need to consider not only the largest sequence number stored in buffer
for a pk’s message record, but also the value of next[k]. The boxed part of line 45’s code implies the
latter case. 2

Claim 6.3 (Closure) Let R be an execution of Algorithm 5 that is not necessarily fair but it is
complete with respect to fifoBroadcast invocations (or R is a suffix of an execution R = R′ ◦R for
which R is complete with respect to the invocation of fifoBroadcast messages in R, cf. Definition 5.2).
Moreover, seq and buffer are consistent in any c ∈ R (Definition 5.1). Algorithm 5 demonstrates in
R a construction of the FIFO uniform reliable broadcast.

Proof of claim. The proof is implied using the sequence numbers in seq and next[] as well as the
URB communication abstraction and its properties, which Theorem 5.3 shows. 2 �

7 Bounded Self-stabilizing Uniform Reliable Broadcast

In this section, we explain how to transform our unbounded self-stabilizing URB algorithm to a
bounded one. We note the existence of several such techniques, e.g., Awerbuch et al. [5], Dolev et
al. [13, Section 10] and Georgiou et al. [14]. The ideas presented in these papers are along the same
lines. They present a transformation that takes a self-stabilizing algorithm for message passing
systems that uses unbounded operation indices and transforms it into an algorithm that uses bounded
indices. The transformation uses a predefined maximum index value, say, MAXINT = 264 − 1, and
it has two phases. (Phase A) As soon as pi discovers an index that is at least MAXINT, it disables
new invocations of operations. (Phase B) Once all non-failing processors have finished processing
their operations, the transformation uses an agreement-based global restart for initializing all system
variables. After the end of the global restart, all operations are enabled. For further details, please
see [5, 13, 14].

8 Conclusions

We showed how non-self-stabilizing algorithms [1, 15, 20] for (quiescent) uniform reliable broadcast
can be transformed into one that can recover after the occurrence of arbitrary transient faults.
This requires non-trivial considerations that are imperative for self-stabilizing systems, such as the
explicit use of bounded buffers. To that end, we developed a flow-control scheme that allows our
URB solution to serve as a basis for explicitly bounding the buffer size at the application layer. The
need to have this new scheme shows that currently there no conclusive evidence for the existence of a
meta-self-stabilizing scheme that can transfer any (or large family of) non-self-stabilizing algorithm
from the textbooks into a self-stabilizing one. We simply need to study one problem at a time
(and its non-self-stabilizing state-of-the-art) until we have an algorithmic toolkit that is sufficiently
generic.

20

References

[1] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free failure detector
for quiescent reliable communication. In Distributed Algorithms, 11th International Workshop,
WDAG ’97, Saarbrücken, Germany, September 24-26, 1997, Proceedings, volume 1320 of Lecture
Notes in Computer Science, pages 126–140. Springer, 1997. doi:10.1007/BFb0030680.

[2] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. On quiescent reliable communication.
SIAM J. Comput., 29(6):2040–2073, 2000. doi:10.1137/S0097539798341296.

[3] Marcos Kawazoe Aguilera, Sam Toueg, and Borislav Deianov. Revising the weakest failure
detector for uniform reliable broadcast. In Prasad Jayanti, editor, Distributed Computing, 13th
International Symposium, Bratislava, Slovak Republic, September 27-29, 1999, Proceedings,
volume 1693 of Lecture Notes in Computer Science, pages 19–33. Springer, 1999. doi:10.1007/
3-540-48169-9_2.

[4] Karine Altisen, Stéphane Devismes, Swan Dubois, and Franck Petit. Introduction to Distributed
Self-Stabilizing Algorithms. Synthesis Lectures on Distributed Computing Theory. Morgan &
Claypool Publishers, 2019. doi:10.2200/S00908ED1V01Y201903DCT015.

[5] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Bounding the unbounded. In
Proceedings IEEE INFOCOM ’94, The Conference on Computer Communications, Thirteenth
Annual Joint Conference of the IEEE Computer and Communications Societies, Networking for
Global Communications, Toronto, Ontario, Canada, June 12-16, 1994, pages 776–783. IEEE
Computer Society, 1994. doi:10.1109/INFCOM.1994.337661.

[6] Kenneth P. Birman. A review of experiences with reliable multicast. Softw., Pract. Exper.,
29(9):741–774, 1999.

[7] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, and Sylvie Delaët. Practically self-stabilizing
Paxos replicated state-machine. In NETYS, volume 8593 of LNCS, pages 99–121. Springer,
2014.

[8] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. J. ACM, 43(2):225–267, 1996. doi:10.1145/226643.226647.

[9] Sylvie Delaët, Stéphane Devismes, Mikhail Nesterenko, and Sébastien Tixeuil. Snap-stabilization
in message-passing systems. J. Parallel Distrib. Comput., 70(12):1220–1230, 2010. doi:

10.1016/j.jpdc.2010.04.002.

[10] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974. doi:10.1145/361179.361202.

[11] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[12] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Memory requirements for silent
stabilization. Acta Inf., 36(6):447–462, 1999. doi:10.1007/s002360050180.

[13] Shlomi Dolev, Thomas Petig, and Elad Michael Schiller. Self-stabilizing and private distributed
shared atomic memory in seldomly fair message passing networks. CoRR, abs/1806.03498,
2018. URL: http://arxiv.org/abs/1806.03498, arXiv:1806.03498.

21

https://doi.org/10.1007/BFb0030680
https://doi.org/10.1137/S0097539798341296
https://doi.org/10.1007/3-540-48169-9_2
https://doi.org/10.1007/3-540-48169-9_2
https://doi.org/10.2200/S00908ED1V01Y201903DCT015
https://doi.org/10.1109/INFCOM.1994.337661
https://doi.org/10.1145/226643.226647
https://doi.org/10.1016/j.jpdc.2010.04.002
https://doi.org/10.1016/j.jpdc.2010.04.002
https://doi.org/10.1145/361179.361202
https://doi.org/10.1007/s002360050180
http://arxiv.org/abs/1806.03498
http://arxiv.org/abs/1806.03498

[14] Chryssis Georgiou, Oskar Lundström, and Elad Michael Schiller. Self-stabilizing snapshot
objects for asynchronous failure-prone networked systems. In Peter Robinson and Faith Ellen,
editors, Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019., pages 209–211. ACM, 2019. Also
appeared in the proceedings of the 7th International Conference on Networked Systems NETYS
as well as a technical report in CoRR abs/1906.06420. doi:10.1145/3293611.3331584.

[15] Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts and related
problems. Technical report, Cornell University, Ithaca, NY, USA, 1994.

[16] Damien Imbs, Achour Mostéfaoui, Matthieu Perrin, and Michel Raynal. Set-constrained
delivery broadcast: Definition, abstraction power, and computability limits. In 19th Distributed
Computing and Networking, ICDCN, pages 7:1–7:10. ACM, 2018. doi:10.1145/3154273.

3154296.

[17] Leslie Lamport. The implementation of reliable distributed multiprocess systems. Computer
Networks, 2:95–114, 1978. doi:10.1016/0376-5075(78)90045-4.

[18] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

[19] Michel Raynal. A case study of agreement problems in distributed systems: Non-blocking
atomic commitment. In 2nd High-Assurance Systems Engineering Workshop (HASE ’97),
August 11-12, 1997, Washington, DC, USA, Proceedings, pages 209–214. IEEE Computer
Society, 1997. doi:10.1109/HASE.1997.648067.

[20] Michel Raynal. Fault-Tolerant Message-Passing Distributed Systems - An Algorithmic Approach.
Springer, 2018. doi:10.1007/978-3-319-94141-7.

[21] Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Comput. Surv., 22(4):299–319, 1990. doi:10.1145/98163.98167.

22

https://doi.org/10.1145/3293611.3331584
https://doi.org/10.1145/3154273.3154296
https://doi.org/10.1145/3154273.3154296
https://doi.org/10.1016/0376-5075(78)90045-4
https://doi.org/10.1145/359545.359563
https://doi.org/10.1109/HASE.1997.648067
https://doi.org/10.1007/978-3-319-94141-7
https://doi.org/10.1145/98163.98167

	1 Introduction
	2 System settings
	2.1 Task specifications
	2.2 The Fault Model and Self-stabilization
	2.3 Complexity Measures
	2.4 External building-blocks: self-stabilizing unreliable failure detectors

	3 Non-self-stabilizing URB with and without Failure Detectors
	4 Unbounded Self-stabilizing Uniform Reliable Broadcast
	5 Correctness
	5.1 Needed definitions
	5.2 Basic facts
	5.3 The convergence property
	5.4 The closure property

	6 Extension: FIFO Message Delivery
	7 Bounded Self-stabilizing Uniform Reliable Broadcast
	8 Conclusions

