Skip to main content

Adaptive Autonomous Machines - Modeling and Architecture

  • Conference paper
  • First Online:
  • 295 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 949))

Abstract

One of the challenges in mechanical and plant engineering is to adapt a plant to changing requirements or operating conditions at the plant operator’s premises. Changes to the plants and their configuration require a well-coordinated cooperation with the machine manufacturer (or plant manufacturer in case of several machines) and, if necessary, with his suppliers, which requires a high effort due to the communication and delivery channels. An autonomous acting machine or component, which suggests and, if necessary, makes necessary changes by automatically triggered adjustments, would facilitate this process. In this paper, subtasks for the design of autonomous adaptive machines are identified and discussed. The underlying assumption is that changes of machines and components can be supported by configuration technologies, because these technologies handle variability and updates through automatic derivation methods, which calculate necessary changes of machines and components. A first architecture is presented, which takes into account the Asset Administration Shell (AAS) of the German Industry 4.0 initiative. Furthermore, three application scenarios are discussed.

This work has been developed in the project ADAM. ADAM (reference number: 01IS18077A) is partly funded by the German ministry of education and research (BMBF) within the research program ICT 2020.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See, e.g., the Choco solver https://choco-solver.org/.

References

  1. Bohlken, W., Koopmann, P., Hotz, L., Neumann, B.: Towards ontology-based realtime behaviour interpretation. In: Guesgen, H., Marsland, S. (eds.) Human Behavior Recognition Technologies: Intelligent Applications for Monitoring and Security, pp. 33–64. IGI Global (2013)

    Google Scholar 

  2. Bougouffa, S., Meßmer, K., Cha, S., Trunzer, E., Vogel-Heuser, B.: Industry 4.0 interface for dynamic reconfiguration of an open lab size automated production system to allow remote community experiments. In: IEEE International Conference on Industrial Engineering and Engineering Management, pp. 2058 – 2062 (2017). https://doi.org/10.1109/IEEM.2017.8290254

  3. Contreras, J.D., Garcia, J.I., Pastrana, J.D.: Developing of industry 4.0 applications. International Journal of Online and Biomedical Engineering (iJOE) 13(10), 30 – 47 (2017). 10.3991/ijoe.v13i10.733

    Google Scholar 

  4. Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J.: Knowledge-Based Configuration: From Research to Business Cases. Morgan Kaufmann Publishers, Massachusetts (2014)

    Google Scholar 

  5. Felfernig, A., Falkner, A., Atas, M., Erdeniz, S.P., Uran, C., Azzoni, P.: ASP-based knowledge representations for IoT configuration scenarios. In: Proceedings of of the 19th Configuration Workshop, Paris, France, pp. 62 – 67, September 2017

    Google Scholar 

  6. Hoellthaler, G., et al.: Reconfiguration of production systems using optimization and material flow simulation. Procedia CIRP 81, 133 – 138 (2019). https://doi.org/10.1016/j.procir.2019.03.024. 52nd CIRP Conference on Manufacturing Systems (CMS), Ljubljana, Slovenia, June 12-14, 2019

  7. Hotz, L., Felfernig, A., Stumptner, M., Ryabokon, A., Bagley, C., Wolter, K.: Configuration knowledge representation & reasoning. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.) Knowledge-Based Configuration – From Research to Business Cases, chap. 6, pp. 59–96. Morgan Kaufmann Publishers (2013)

    Google Scholar 

  8. Hotz, L., von Riegen, S., Herzog, R., Pein, R.: Towards a modular distributed configuration model for autonomous machines. In: Forza, C., Hvam, L., Felfernig, A. (eds.) Proceedings of the 22th Configuration Workshop, pp. 53–56. Università degli Studi di Padova, Italy, September 2020

    Google Scholar 

  9. Hotz, L., von Riegen, S., Herzog, R., Riebisch, M., Kiele-Dunsche, M.: Adaptive autonomous machines – requirements and challenges. In: Hotz, L., Krebs, T., Aldanondo, M. (eds.) Proceedings of of the 21th Configuration Workshop, pp. 61–64, September 2019

    Google Scholar 

  10. Hotz, L., Wolter, K.: Smarthome configuration model. In: Felfernig, A., Hotz, L., Bagley, C., Tiihonen, J. (eds.) Knowledge-Based Configuration – From Research to Business Cases, chap. 10, pp. 157–174. Morgan Kaufmann Publishers (2013)

    Google Scholar 

  11. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor, J.: Configuration in Industrial Product Families - The ConIPF Methodology. IOS Press, Berlin (2006)

    Google Scholar 

  12. Patzer, F., Volz, F., Usländer, T., Blöcher, I., Beyerer, J.: The industrie 4.0 asset administration shell as information source for security analysis. In: IEEE International Conference on Emerging Technologies and Factory Automation, pp. 420 – 427 (2019). https://doi.org/10.1109/ETFA.2019.8869059

  13. Plattform Industrie 4.0: Details of the Asset Administration Shell. https://www.plattform-i40.de/PI40/Redaktion/EN/Downloads/Publikation/Details-of-the-Asset-Administration-Shell-Part1.pdf

  14. DIN SPEC 91345: Reference Architecture Model Industrie 4.0 (RAMI4.0). Beuth Verlag GmbH, Berlin, April 2016

    Google Scholar 

  15. Rockel, S., et al.: An ontology-based multi-level robot architecture for learning from experiences. In: Designing Intelligent Robots: Reintegrating AI II, AAAI Spring Symposium, Stanford, USA, pp. 52 – 57, March 2013

    Google Scholar 

  16. Scholz-Reiter, B., Freitag, M.: Autonomous processes in assembly systems. CIRP Ann. 56(2), 712–729 (2007). https://doi.org/10.1016/j.cirp.2007.10.002

    Article  Google Scholar 

  17. Schreiber, D., P.C., G., Lachmayer, R.: Modeling and configuration for Product-Service Systems: state of the art and future research. In: Proceedings of the 19th Configuration Workshop, Paris, France, pp. 72 – 79, September 2017

    Google Scholar 

  18. Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., Pham, D.T.: A reconfigurable modeling approach for digital twin-based manufacturing system. Procedia CIRP 83, 118–125 (2019). https://doi.org/10.1016/j.procir.2019.03.141. 11th CIRP Conference on Industrial Product-Service Systems

  19. ZVEI e.V.: Struktur der Verwaltungsschale - Version 2, Fortentwicklung des Referenzmodells für die Industrie 4.0 - Komponente (2015). (in German)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie von Riegen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hotz, L., Herzog, R., Riegen, S.v. (2021). Adaptive Autonomous Machines - Modeling and Architecture. In: Stettinger, M., Leitner, G., Felfernig, A., Ras, Z.W. (eds) Intelligent Systems in Industrial Applications. ISMIS 2020. Studies in Computational Intelligence, vol 949. Springer, Cham. https://doi.org/10.1007/978-3-030-67148-8_8

Download citation

Publish with us

Policies and ethics