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Sevilla, España
{benavides, jagalindo}@us.es

3 Andalusian Research Institute DaSCI “Data Science and Computational
Intelligence”, Universidad de Granada, Granada, España

jgiraldez@ugr.es

Abstract. The completion of partial configurations might represent an
expensive computational task. Existing solutions, such as those which
use modern constraint satisfaction solvers, perform a complete search,
making them unsuitable on large-scale configurations. In this work, we
propose an approach to define the completion of a partial configuration
like a diagnosis task to solve it by applying the FastDiag algorithm,
an efficient solution for preferred minimal diagnosis (updates) in the
analyzed partial configuration. We evaluate our proposed method in the
completion of partial configurations of random medium and large-size
features models and the completion of partial configurations of a feature
model of an adapted version of the Ubuntu Xenial OS. Our experimental
analysis shows remarkable improvements in our solution regarding the
use of classical CSP-based approaches for the same tasks.
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1 Introduction

Configuration technology is a successful application of artificial intelligence (AI)
in the industry [9]. By applying configuration technology, the development and
maintenance costs of critical functionalities (features) notably reduce enabling
the mass customization realization [11]. Software product line (SPL) is an ap-
plication domain for the mass-customization of software products [8].

Software product line engineering (SPLE) promotes the mass customization
of software products (configurations) by identifying common and reusable fea-
tures (e.g., functionalities) for the satisfaction of individual consumer require-
ments, and taking advantage of using a defined production framework [1, 6].
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SPLE relies on efficient mechanisms to detect and diagnose anomalies in con-
figurations, i.e., finding configurations that violate some constraints of the SPL
and explaining the reasons for such inconsistency. To this purpose, feature mod-
els (FMs) have been proposed as a compact abstraction of families of products
since they allow to represent all the existing features in the family and con-
straints among them [17]. FMs represent the valid product configurations of a
software product family [6]. Although in this work we consider basic FMs [4],
our proposed solution can be directly applied to more complex FMs, such as
cardinality-based FMs [14] and attributed FMs [18], as well as to other configu-
rations approaches supported by some reasoning technology. We use FMs as an
example to illustrate our approach.

The completion of partial configurations consist of finding the set of non-
selected components necessary for getting a complete configuration. In FM con-
figurations, each feature is decided to be either present or absent in the resulting
products, whereas in partial configurations, some features are undecided. The
completion of partial configuration is a non-trivial and computationally expen-
sive task due to the existence of constraints among features of FMs [15], and more
expensive in large-scale FMs. Configurations can result in misconfigurations (i.e.,
non-valid configurations) which can impact on the system availability [25]. Un-
availability of the Facebook platform [7], service-level problems of Google [3], and
invalid operation of Hadoop clusters [19] are known misconfiguration examples.

In the literature there exist efficient algorithms for the automated analysis
and diagnosis of FMs, such as FastDiag and FlexDiag [8, 11, 12]. FastDiag and
FlexDiag rely on encoding the FM constraints into the formal representation
of reasoning technology for diagnosis in those configurations using off-the-shelf
solvers (e.g. Constraint Satisfaction Problem and SATisfiability Problems, that
is, CSP and SAT, respectively). Existing computer-assisted methods for the
completion of partial configurations, such as modern CSP solvers, often apply
computationally expensive complete search functions [24]. Hence, to find a con-
sistent FM configuration of FMs with n features requires exploring 2n possible
configurations in the worst case. Moreover, CSP and SAT solver solutions can
be minimal, but they not always represent the preferred configuration [22].

In this work, we define the completion of partial configurations as diagnosis
tasks to solve them by using an efficient diagnosis algorithm. Specifically, we use
the diagnosis algorithm FastDiag to evaluate its performance regarding applying
a traditional CSP-based approach. Our experiment consists of random products
of a set of FMs, both randomly generated by the Betty toolkit, and partial con-
figurations of the FM of a Ubuntu Xenial version. The obtained results show that
our proposal is several orders of magnitude faster than the applied traditional
CSP-based approach. Thus, Our contributions are the following:

– We define the completion of partial configurations as a diagnosis task. This
approach allows us to directly apply FastDiag to get a consistent configura-
tion from a predefined set of features (i.e., from a partial configuration).

– We provide a public available implementation of our solution in the FaMa
platform [5], as well as a set of available models and configurations.
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The rest of the article is organized as follows. Section 2 describes prelimi-
nary background on FM and existing diagnosis solutions. Section 3 establishes
the background to define the completion of partial configurations as diagnosis
problems. Section 4 defines case studies and presents the application results of
our solution. Some related works are described in Section 5. Finally, Section 6
concludes and proposes future work.

2 Preliminaries

2.1 Feature models and completion of partial configurations

An FM is a tree-like hierarchical representation of features and their constraints
for a family of products. The following types of constraints exist in basic FMs: (a)
parent-children or inclusion relationships, and (b) cross-tree constraints (CTC).
Four kinds of inclusion relationships exist: (i) mandatory (the parent requires its
child, and vice versa), (ii) optional (the parent does not require its child), (iii)
inclusive-OR (the parent requires at least one of the set of children), and (iv)
alternative-XOR (the parent requires exactly one of the set of children). CTC
of traditional FMs are (v) requires (a feature requires another), and (vi) ex-
cludes (two features cannot be in the same configuration). Figure 1 illustrates
a FM with a root feature Debian that has the mandatory children texteditor,
bash and gui. Feature texteditor has an inclusive set of children features vi,
gedit and openoffice.org-1, and openoffice.org-1 also has two optional children
features openoffice.org-1.1 and openoffice.org-1.2. Feature gui has an inclusive
set of children features gnome and kde. Feature gnome is required by feature
openoffice.org-1.

Fig. 1. An example of a partial configuration completion in the Debian FM.

Figure 1 illustrates this problem (the features in green represent selected
features). The partial configuration in the left {Debian, texteditor} is extended
to the complete configuration {Debian, texteditor, gedit, bash, gui, kde} in the
right. We construct these models using FeatureIDE [20].
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2.2 FM Configuration and Diagnosis Tasks

An FM configuration task (F , D, C) consists of setting the values of a set of fea-
tures F = {f1, . . . , fn} in a common domain D to satisfy a set of configuration
constraints C = CF ∪ CR. CF represents the FM base knowledge (i.e., con-
straints among the features) and CR the user preferences (i.e., desired features
in the product) [8], and D is {true, false} usually. Hence, a complete config-
uration represents a setting of each feature fi in F respecting the configuration
constraints of C.

Configurations that violate the FM constraints require diagnosis operations
for identifying solutions. For a consistent knowledge baseAC, and a non-consistent
configuration S, a diagnosis task (S, AC) gives a set of constraints or diagnosis
∆ ⊆ S such that (AC − ∆) is consistent. Hence, S is the set of selected features
in a configuration. The presence or absence of a set of features S = {f1, . . . , fk}
can be expressed as the constraint ∀i 1 ≤ i ≤ k, fi = true or false, respectively.
∆ is minimal if ¬∃∆′ ⊂ ∆ satisfying the diagnosis property in AC.

3 Minimal completion of configurations by diagnosis

As was mentioned in the previous section, to proceed with an FM diagnosis,
FastDiag receives the parameters S and AC, that is, the user preferences and the
FM knowledge base that contains S. The completion of a partial configuration is
a diagnosis task to find the preferred minimal set of features to select for getting
a full configuration. Hence, the main task to apply FastDiag for diagnosis a
preferred minimal completion is to define the knowledge base and the suspicious
set of constraints in conflict.

An FM formally represents a set of features F and a set of constraints C.
A partial configuration can be seen as a set of assigned features S, i.e., S ⊂
F . Likewise, we define the set of unassigned features nS as nS = (F − S) 6=
∅. The partial configuration S is valid if C ∪ S is consistent, which, for the
sake of clarity, we always assume to hold. To find the remaining features for a
complete configuration, we run FastDiag with S = nS, and a knowledge base
C ∪S. We assign Boolean values to the components of S and nS for consistency
checks in the FM. FastDiag returns a preferred minimal set ∆ ⊆ nS of features
necessary for the completion of the partial configuration S. In summary, we
define a FastDiag application for diagnosis features for the completion of partial
products. Table 1 gives our definition for that task. The sets S and nS represent
the selected and non-selected features in the partial configuration p respectively,
and C is the set of base constraints in the FM. Because FastDiag works on
constraints in a reasoning solver tool such as CSP and SAT, our solution is not
restricted to work only for the FMs completion. We suggest to read [10, 13] for
more details of FastDiag.

FastDiag gives an ordered by preference set of features to update using a
lexicographical order by default. Our solution can use personalized options for
selecting features such as randomly, the nearest feature to some already chosen
feature, or based on a priority ranking regarding previous configurations.
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Table 1. Diagnosis-based solution for the completion of a partial configuration using
FastDiag.

Analysis operation Property check Explanation (Diagnosis)

Completion of Partial
Configurations

Diagnosis in nS (set of
non-selected features)

FastDiag(nS,C ∪ S ∪ nS)

4 Empirical Evaluation

To evaluate the performance of our solution, first, we generate a set of random
FMs using the Betty tool-suite [23] to define the number of features and structure
of randomly generated FMs. Betty also allows us to define the number of CTC
in the model. In our experiment, we generate models with the following number
of features |F | = {50, 100, 500, 1000, 2000, 5000} and the following percentages of
CTC c = {5, 10, 30, 50, 100}. For each model, we generate partial configurations
with the following percentages of assigned features a = {10, 30, 50, 100}. We
generate 10 random instances for each model and partial configuration.

Table 2. Avg. time (in milliseconds) on the completion of partial configuration of
randomly generated Betty FMs by the number of features n.

n CSP-based app FastDiag app % speed-up

50 98.00 97.90 0.10
100 109.06 104.63 4.06
500 200.09 171.60 14.24
1,000 405.89 258.26 36.37
2,000 1,392.27 411.01 70.48
5,000 15,677.93 808.61 94.84

All 2,980.54 308.67 36,58

Our proposal is evaluated using FastDiag in the FaMa tool suite with the
Choco CSP solver [5] for consistency checks. The CSP-based approach uses
the same solver. In what follows, we report the results comparison of both ap-
proaches. In each results table, the best values are marked in bold.

In Table 2 we report the average solving time of the CSP-based and the
FastDiag approach, aggregating the results by the number of features in the
random models. In Tables 3 and 4, we report the same results aggregated by the
percentage of CTC and the percentage of features in the partial configuration,
respectively. The last column (%speed− up) of each table shows the percentage
of improvement of our solution regarding the CSP-based approach. The last row
presents the average results.

The first observation is that in all the comparisons, the FastDiag diagnosis
solution is faster than the CSP-based approach. In general, there are noticeable
differences, in some cases with a speed-up greater than 19x (see n = 5000 in
Table 2). Hence, the performance improvements are bigger as the number of
features in the FM increase. This is possibly due to the complete search of the
CSP solver that scales exponentially. In contrast, our solution seems to scale
much better. Notice that the speed-ups in Table 2 increases for greater values
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of n. On the contrary, as Tables 3 and 4 show, the number of CTC and size
of the partial configuration seem to have a low effect on the performance of
both solutions. However, there are two remarkable effects. First, the speed-up of
FastDiag slightly decreases as the number of CTC increases. This suggests that
if the number of constraints is exponentially big, there may be cases in which
both approaches perform similarly. Second, the speed-up of FastDiag slightly
decrease as the partial configuration becomes smaller. This suggests that the
larger the size of such a partial configuration, the bigger the differences between
FastDiag and the CSP-based approach.

Table 3. Avg. time (in milliseconds) on the completion of partial configuration of
randomly generated Betty FMs by the % of CTC cc.

c CSP-based app FastDiag app % speed-up

5 2,953.98 275.80 90,67
10 2,993.21 282.57 90,56
30 2,971.61 303.87 89,77
50 2,937.65 308.72 89,49
100 3,046.24 372.38 87,78

All 2,980.54 308.67 89,64

Table 4. Avg, time (in milliseconds) on the completion of partial configuration of
randomly generated Betty FMs by the % of features in the partial configuration a.

a CSP-based app FastDiag app % speed-up

10 2,954.96 318.23 89.23
30 2,973.43 315.03 89,41
50 2,966.08 306.58 89.66
100 3,027.68 294.82 90,26

All 2,980.54 308.67 90,26

Figure 2 shows the scatter plot of both approaches, i.e., the solving time of
the CSP-based approach in the X axis versus the FastDiag approach in the Y
axis. This plot confirms the expected performance from the aggregated results
in the previous tables. In particular, we can observe that the solution based on
diagnosis algorithm scales quite well with the number of features of the generated
model, whereas there are only small differences when this solution is compared
with respect to other parameters, such as the number of CTC or the size of the
partial configuration.

As a second performance evaluation, we generated an FM and partial prod-
ucts for the Ubuntu Xenial OS. We generate five valid partial products of 5%,
10%, and 15% of a complete and valid configuration for that FM, respectively.
Then, we apply the CSP-based approach and FastDiag for the completion of
those products. Table 5 and Figure 3 show the computation results. Like in
the previous report, speed-up percentages exist in these tests that confirm the
efficiency of our solution.
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Fig. 2. Scatter plot of CSP-based versus FastDiag approach on the completion of par-
tial configuration of randomly generated Betty FMs (in seconds), aggregated by the
number of features (top left), by the percentage of CTC (top right), and by the per-
centage of features in the partial configuration (bottom).
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Fig. 3. Runtime execution for the completion of partial products for a FM of Ubuntu
Xenial.

Table 5. Avg. solving time (in milliseconds) on the completion of partial configuration
of randomly generated partial configuration of an FM for a reduced version of the
Ubuntu Xenial OS by the percentage of features in the partial configuration.

%Features CSP-based app FastDiag app % speed-up

5 62,297.05 26,318.14 57,75
10 63,885.43 25,467.03 60,14
15 62,973.01 25,508.02 59,49

All 63,051.83 25,764.40 59,13

All experiments were executed in an Intel(R) Core (TM) i7-3537U CPU @
2.00 GHz with 4 GB RAM using a Windows 10 64 bits operating system.

5 Related Work

Reiter [21] introduces the Hitting Set Directed Acyclic Graph for diagnosis us-
ing a breadth-first search on conflict sets. Bakker et al. [2] apply a model-based
diagnosis to identify the set of relaxable constraints on conflict sets in a CSP
context. Junker [16] proposes QuickXplain, a divide-and-conquer approach to
significantly accelerate the conflict detection on over-constrained problems. Fol-
lowing the QuickXplain divide-and-conquer strategy, Felfernig et al. [10] present
FastDiag for efficient diagnosis solutions on customer requirements in consistent
configuration knowledge bases. The work of [8] review and apply FastDiag on
the FM diagnosis, and [12, 11] describe FlexDiag as a FastDiag extension for
anytime diagnosis scenarios and apply both algorithms for the FMs diagnosis.
Felfernig et al. [8] also highlight an advantageous property of FastDiag regarding
existing diagnosis approaches: FastDiag is a direct-diagnosis solution without a
preceding conflict detection, that is, FastDiag uses a conflict-independent search
strategy [9].
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6 Conclusions

In this work, we defined a solution for the completion of partial configurations
as a diagnosis problem that allows us to apply FastDiag to this problem. Exper-
imental results with FMs show that this approach improve a traditional solution
approach in several orders of magnitude, achieving speed-ups of more than 19x
in some cases. Therefore, FastDiag also represents an efficient solution for the
completion of configurations in software product lines.

As future work, we plan to adapt these ideas to FlexDiag in real-time scenar-
ios with predefined time limits and acceptable trade-offs between the diagnosis
quality and efficiency of the diagnostic reasoning. Moreover, we plan to evaluate
these diagnosis algorithms with other combinatorial encoding paradigms, such
as SAT or SMT.
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