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Abstract. Code coverage has been used in the software testing context
mostly as a metric to assess a generated test suite’s quality. Recently,
code coverage analysis is used as a white-box testing technique for test
optimization. Most of the research activities focus on using code coverage
for test prioritization and selection within automated testing strategies.
Less effort has been paid in the literature to use code coverage for test
generation. This paper introduces a new Code Coverage-based Test Case
Generation (CCTG) concept that changes the current practices by uti-
lizing the code coverage analysis in the test generation process. CCTG
uses the code coverage data to calculate the input parameters’ impact
for a constraint solver to automate the generation of effective test suites.
We applied this approach to a few real-world case studies. The results
showed that the new test generation approach could generate effective
test cases and detect new faults.

Keywords: Software Testing · Code Coverage· Automated Test Gener-
ation· Test Case Augmentation· Constrained Interaction Testing.

1 Introduction

In software engineering, regression testing has become a common practice to be
used during test development. In this practice, testers begin by rerunning exist-
ing test suites to validate new software-under-test (SUT) functionality. However,
this approach faces many problems as existing tests decrease their ability to de-
tect SUT faults. This paper shows how Test suite augmentation techniques can
be used to solve this problem3.

To improve the test generation, tools like code coverage analysis and con-
straint solving are commonly utilized. We use these techniques in the Code
Coverage-based Test Case Generation (CCTG) method. This approach is akin
to Test suite augmentation techniques [10], which is commonly used in regres-
sion testing. Augmentation is employed to adjust existing test cases by analyzing

3 This paper is accepted for publication in the 2nd International Workshop on Auto-
mated and verifiable Software sYstem DEvelopment
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changes in the SUT. Practitioners of Test suite augmentation techniques believe
the use of preexisting test cases can improve that test suites [9]. To promote
these test cases, the SUT is analyzed using code coverage and other criteria to
prioritize how changes to the test suites should be conducted. In our method, we
focus on the second part of the augmentation approach – code coverage. By an-
alyzing the code coverage of preexisting generated test cases, we can determine
test parameters’ impact. This information is then used for the test generation.

CCTG can be used for the test suite augmentation method by utilizing the
code coverage data and test models to refine the test generation process. To
generate the test cases, CCTG first creates the test data sets used for the input
interaction. A test model consists of the SUT parameters classes (i.e., possible
parameter values). The results are sets of specific SUT parameter values, which
will be referred to as test cases. The parameter classes are then used to generate
random test cases to be executed for code coverage monitoring. This process
generates coverage data related to each generated test case. If a specific test pa-
rameter change affects the coverage consistently or significantly, the parameter’s
weight also increases. The weight indicates the extent to which each parameter
is used and permuted when generating a new set of test cases. The process as a
whole contributes towards the test suite augmentation. Here, the code coverage
data used for the augmentation may also minimize the number of test cases and
generate more effective test cases in terms of fault-finding.

As in most modern software systems, the test suite augmentation also suffers
from input interaction constraint problems [1]. Here, we deployed a constraint
solver within our approach during the test generation process to resolve the
input values’ constraints. The solver makes sure no test cases are generated with
meaningless interactions with the SUT. The resulting test cases should resemble
the general workflow of test cases [4] as the code coverage analysis motivates
variety in decision paths, and the constraint solver ensures that the combinations
remain reasonable.

2 Background

Classically, code coverage has been used as an analytical approach with the
test suite execution. The approach is also used with the test suite generation
strategies to maximizing the code-base covered by generating more test cases [8].
We have recently used more advanced techniques function as gray-box methods
for test case analysis and test generation [2]. We considered the code’s internal
structure while augmenting a generated test suite for Combinatorial Interaction
Testing (CIT). This approach improved the test generation process by studying
the program’s code to determine individual parameters’ impacts. We used this
impact factor to select the input parameters and values for the test cases. In
this regard, the CCTG strategy proposed in this paper is very similar. However,
examining the internal code structure can prove costly, in terms of a manual
analysis of the input parameters and values. So, the CCTG simplifies this process
by automatically evaluating the parameter impact, requiring only a test model of
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parameters and their possible values. It can also explore various hidden criteria
for test generation (such as SUT configuration and state).

A common problem for test generation is that the test models don’t consider
specific constraints that would make the test cases useless or nonsensical. To
avoid this, test generation methods [7,11] rely on constraint solvers to eliminate
such undesirable combinations. Such constraint or rather Boolean satisfiability
problem-solvers [3] (SAT solvers) are also employed in the CCTG method. The
solver’s additional benefit is that the CCTG user may incorporate the SAT
constraints into the test model to prevent the generation of unwanted test cases
and correct the focus of the test cases. If new functionality is added to the SUT,
it can be specified that some parameters (representing the choice to use the
new functionality) must be used. This allows the tester to influence the test
generation by only adjusting the test model without changing the code coverage
analysis results.

While the CCTG finds relations to the previously mentioned techniques, it
is primarily a test suite augmentation method [10]. Our approach is based on an
innovative idea of augmenting test cases using the coverage criteria. The CCTG
method, however, uses randomly generated test cases to establish the coverage
data. This data is then used to generate what is essentially the first set of actual
test cases.

3 The proposed method

In this section, we examine each step of the CCTG method. The following sub-
sections illustrate these steps in detail.

3.1 Determining parameter weight

The initial step in the CCTG methods is the code coverage analysis. This process
is used to calculate the impact (weight) of SUT parameters that will be used for
test generation.

SUT Test model For each SUT, a model (shown in figure ??(a)) for interaction
consisting of the input parameters and constraints among them. The parameters
are represented as the P[n] array, where each index P[1], P[2],... P[n] represents
one of the test model parameters. Each parameter has a value. The value V is
the possibility of a parameter. This can be represented in two ways, either the
V is an array of the possible values for parameters (booleans or enums) from the
SUTs perspective, or the value can be represented as a number with a range. In
the case of range representation, the parameter depth [d] is added to represent
the number of values chosen from the range for further test generation. The
other parameter property in the model is its weight, which is graded as a float
ranging from 0 to 1.

The second part of the model is a set of SAT constraints to ensure that the
conflicting decision is not selected. This model is used to generate the initial test
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P[1]

P[2]

P[3]

			...

P[k]

			...

P[n]

V	=	[1,	2,	...,	n]
w	∈	<0,1>

SUT	parameters SAT	constraints

P[1]	==	P[1].V[1]	or	P[k]	!=	-1	

and

P[k]	<	10

and

P[n]	!=	P[n].V[2]	xor	P[l]	<	5

			...

V	=	{type,<j,k>}
d	∈	N
w	∈	<0,1>

(a) SUT test model

TC[1]
TC[2]
TC[3]

TC[k]
TC[k+1]

TC[n]
TC[n+1]
TC[n+2]

=	[P[1].RV[1],	P[2].RV[1],	...	,P[k].RV[1],	...	P[n].RV[1]]
=	[P[1].RV[2],	P[2].RV[1],	...	,P[k].RV[1],	...	P[n].RV[1]]
=	[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[1],	...	P[n].RV[1]]

=	[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[1],	...	P[n].RV[1]]
=	[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[1]]

=	[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[1]]
=	[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[2]]
=	[P[1].RV[3],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[2]]

.

.

.

.

.

.

.

.

.

(b) Test case analysis

Fig. 1: SUT modeling and parameter analysis

cases for code coverage analysis and generate the resulting test set for the actual
testing. For regression testing, the first set of random test cases can be replaced
with a set of regression tests from earlier stages of the SUT development.

Test case analysis and generation In contrast to other strategies, maxi-
mizing of code coverage is not a direct goal for CCTG. The strategy relies on
using the coverage data in a more specific manner more targeted on condition or
coverage principles. We follow the standard definition of code coverage for lines
of code per individual test case. The gcov4 tool and stored for later analysis for
each test case. The test suite used for coverage determination is designed in a
very specific way. As the initial step of generation, we select a test depth level.
This level represents how many values will be selected for each parameter. The
same number of values as overall test depth is selected for each parameter P
and randomly ordered in an array RV. The first test case TC uses each param-
eter’s first value in all randomly ordered lists. For every test case after that,
one parameter changes the value to the next in the randomised list (P[1].RV[1]
to P[1].RV[2]) as shown in ??(b). We proceed this way until all the arrays are
exhausted. The rationale behind this approach is its effects on code coverage
change that determines the parameter impact. We always select two test cases
where all but one parameter have the same values to measure this. This will be
explained in the Parameter weight calculation section and the figure 2

Parameter weight calculation The initial step in this phase is to determine
each parameter’s effect on code coverage (i.e., the parameter weight). Using the
initial test cases, the code coverage is gathered automatically. To determine the
information about a specific parameter, we must take a look at a set of test
cases, where the examined parameter changes, while the remaining parameters
stay the same, as shown in figure 2.

Initially, a parameter is selected by the algorithm for analysis. Then, similar
pair test cases are selected, except for the value of the parameter under investi-

4 https determines the code coverage://linux.die.net/man/1/gcov
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TC[1]
TC[2]
TC[3]

TC[k]
TC[k+1]

TC[n]
TC[n+1]
TC[n+2]

=	{[P[1].RV[1],	P[2].RV[1],	...	,P[k].RV[1],	...	P[n].RV[1]],	CC}
=	{[P[1].RV[2],	P[2].RV[1],	...	,P[k].RV[1],	...	P[n].RV[1]],	CC}
=	{[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[1],	...	P[n].RV[1]],	CC}

=	{[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[1],	...	P[n].RV[1]],	CC}
=	{[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[1]],	CC}

=	{[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[1]],	CC}
=	{[P[1].RV[2],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[2]],	CC}
=	{[P[1].RV[3],	P[2].RV[2],	...	,P[k].RV[2],	...	P[n].RV[2]],	CC}

.

.

.

.

.

.

.

.

.

Fig. 2: Test case selection

gation. The difference in the code-coverage results of the test cases is recorded.
These steps are repeated for all remaining pairs of test cases matching the crite-
ria of all parameters being the same, except for the changing parameter under
analysis. From the derived differences in coverage, an average is calculated. This
average represents an absolute value of the parameters weight. These steps are
illustrated in detail in the Algorithm 1.

Algorithm 1: Steps in the code coverage analysis to determine parameter’s
impact
1 CodeCoverageAnalysis (TCL, P )

Input : Test case list TCL, Parameter-under-test P
Output: Measure of the impact of parameter P on code coverage avrg(DL)

2 TL = TestCaseList;
3 DL = list of float values;
4 while TCL not empty do
5 TL add(TCL pop first item);
6 foreach TC in TCL do
7 if each i/PI : PV [i] in TC == PV [i] in TL[0] then
8 TL add(pop TC from TCL);

9 DL add(max(TL) min(TL));
10 TL clear;

11 return avrg(DL);

Maximum code coverage for the generated tests is not the aim here. Instead,
by determining the impact on individual parameters’ coverage, parameters are
selected for permutation in test cases if they influence code coverage more.

3.2 Test case generation

Test cases are generated using the data of parameter weight. All unary param-
eters have only two possible permutations (0,1) as they can only be or not be
included upon program execution. The number of binary parameter permutation
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is equal to 1 + the number of pre-selected possible values. The unary parameter
is a set with two elements (one being the parameters exclusion) and the binary
a set with 1 + (number of values) elements. All test cases created are solved for
constraints.

The code-coverage based method is relying on the selected parameters to
permute based on their weight. All weights are places on an axis, spanning
the range from 0 to 100. Thanks to normalizing the values, their sum is 100
exactly and, as such, fills up the entire axis. For example, take 3 parameters with
respective weights 15, 60, and 25. The parameters would assume the following
ranges on the axis. P1 (0,15), P2 (15,75) and P3(75,100).

The first constructed test case has all parameters with their default values.
A random real number is generated in the range of (0,100) to construct the next
test case. A parameter whose range corresponds (on the axis) to the number
generated is selected for the permutation. The selected parameter’s value is
permuted to the next value in the sum that represents it. The test case is then
saved if it is not identical to a previously created one. The test case generation
algorithm is included in Algorithm 2.

Algorithm 2: Code-coverage-based test-case generation
1 CVBasedTCGeneration (PL, n)

Input : ParameterList PL, Number of test cases to be generated n
Output: TestCaseList TCL

2 TCL = list of TestCases ;
3 CTC = TestCase where each PV in PV L is 0;
4 while n > 0 do
5 r = random float value;
6 t = 0;
7 foreach P in PL do
8 t = t + PW in P ;
9 if r <= t then

10 permute(P );

11 add(PL);
12 n–;

13 return TCL;

We have used the Z3 solver with this test generation to resolve the con-
straints. We have also developed an interface for the tool so that the relevant
constraints for test cases exclusion can be imported from the test model.

4 Experimental evaluation

To evaluate the CCTG method, we have conducted three case studies. The
experiments were designed according to the Mutation Testing [6] approach. For
each case study, several mutants were created using a fault seeding framework.
To test the CCTG method’s effectiveness, the generated test cases were used
for both the original version of the SUT and the mutated (faulty) version. The
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outputs of the two SUTs were then compared. When the outputs differ, the fault
is considered to be detected. The mull [5] LLVM-based tool was used.

For the case studies, the Unix utilities Flex, grep, gzip were selected. The
Software-artifact Infrastructure Repository5 obtained from the Gnu site. These
utilities were chosen, as the test cases generated represent their command-line
arguments. Therefore, each test case is essentially a parametrized call of these
utilities that produces a standard output test.

The test case structure reflects the archetype of the SUTs from the case
study, standard C utilities, requiring only a set of arguments. For the case study,
CCTG test cases were therefore represented by a set of command-line arguments
only. The type of arguments or parameters used can be divided into a few basic
categories. There is a unary argument – which always represents a Boolean value.
As the parameters are for typical command-line programs, these usually specify
some functionality (e.g., –printToCommandLine) that is enabled or a specific
instruction (e.g., –help). The second type is binary arguments, consisting of
parameter and value (e.g., –input /inputs/file1).

For each SUT, a set of all possible parameters is gathered. This is a simple
list of all unary parameters accompanied by possible values for the binary ones.
In many cases, the parameter values are subjective to the testing environments.
Input files are part of prepared testing inputs for a specific program. Values
with range such as integers are also limited to discrete and finite selection. The
range’s selecting values are done either based on other testing information, cho-
sen randomly, or at regular intervals. The selection of specific values from a
range does not directly affect the experiments as the selections are final for all
test generation methods. Seeded versions of SUT are executed using test cases
generated by various methods to measure the test effectiveness. The methods
used are compared to the code-coverage method.

As a reference, we use two methods of test generation: Random generation
and unweighted method. The random generation method is based on random
parameter permutation. The initial setup is very similar to the CCTG method,
as prepared sets represent the parameters. Unlike the CCTG method, the ran-
dom method does not rely on coverage information but approaches the selection
of parameters for permutation entirely randomly. The selection of parameters
for permutation and the value to which it should be permuted is determined
randomly. First, a random integer in the range representing all the test case
parameters is generated to select a permutation parameter. Secondly, a second
random integer is generated within the range of all said parameter values minus
one (the one being the previous parameter value - so as not to repeat the same
test case).

In each study, a set of 100 test cases is generated. This is done for all three
methods and is used on 20 different seeded faults. The entire process is then
repeated five times by generating a new set of test cases. The test cases were
generated multiple times to account for the random elements in their generation.

5 http provided the programs://sir.unl.edu



8 Krystof Sykora, Bestoun S. Ahmed, and Miroslav Bures

The code-coverage based method generally has the best results. For illustration,
the results of each program are show in box-plot Figures 3a, 3b, and 3c.
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Fig. 3: CCTG evaluation results in Box Plot

The Flex results are shown in Figure 3a and have the narrowest range for the
code-coverage method the shortest box plot. This indicates that the coverage
based test cases are of very similar quality for flex. The code coverage method
also has an overall higher median. However, the random method shows a tall
box-plot, reflecting a completely random approach to test generation.

Figure 3b for the Grep experiments has all box plots of similar size. This
reflects the random elements in all test generation methods. However, it does not
produce such dissimilar sizes as in the Flex experiments. The overall dispersion,
while similar in size, is marginally more successful for the code coverage method.

Gzip experiment results are shown in Figure 3c. Here the smallest box plot
represents the systematic method. While this does not correspond with results
from other tests, it is not necessarily a surprise, as the systematic method has
the lowest random factor of generation. The code coverage method again holds
a marginally better median then the remaining two methods.

In all three cases, the medians are lower compared to the code coverage
method. Most distributions in all figures are also not widely dissimilar, indicating
even effectively test generating methods. It also shows the code coverage method
as the most effective one.

5 Conclusion

This paper presented a new automated test case generation method based on the
code coverage measure. The method’s goal is to achieve automated test gener-
ation using the code coverage, which would also show improved performance at
fault detection. Three case studies were implemented that compared out method
against two other trivial approaches for test case generation. The results showed
an overall improvement in the fault detection rate. The future goal is to work
with a wider variety of parameters.
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