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Approximation of DAC Codeword Distribution

for Equiprobable Binary Sources along Proper

Decoding Paths

Yong Fang

Abstract

Distributed Arithmetic Coding (DAC) is an effective implementation of Slepian-Wolf coding, espe-

cially for short data blocks. To research its properties, the concept of DAC codeword distribution along

proper and wrong decoding paths has been introduced. For DACcodeword distribution of equiprobable

binary sources along proper decoding paths, the problem wasformatted as solving a system of functional

equations. However, up to now, only one closed form was obtained at rate 0.5, while in general cases,

to find the closed form of DAC codeword distribution still remains a very difficult task. This paper

proposes three kinds of approximation methods for DAC codeword distribution of equiprobable binary

sources along proper decoding paths: numeric approximation, polynomial approximation, and Gaussian

approximation. Firstly, as a general approach, a numeric method is iterated to find the approximation

to DAC codeword distribution. Secondly, at rates lower than0.5, DAC codeword distribution can be

well approximated by a polynomial. Thirdly, at very low rates, a Gaussian function centered at 0.5

is proved to be a good and simple approximation to DAC codeword distribution. A simple way to

estimate the variance of Gaussian function is also proposed. Plenty of simulation results are given to

verify theoretical analyses.

Index Terms

Distributed Source Coding, Slepian-Wolf Coding, Distributed Arithmetic Coding, Codeword Dis-
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I. INTRODUCTION

Consider the problem of Slepian-Wolf Coding (SWC) with decoder Side Information (SI), i.e.

the encoder compresses discrete sourceX in the absence ofY , discretely-correlated SI. Slepian-

Wolf theorem states that lossless compression is achievable at ratesR ≥ H(X|Y ) [1], where

H(X|Y ) is the conditional entropy ofX given Y . Conventionally, channel codes, e.g., turbo

codes [2] or Low-Density Parity-Check (LDPC) codes [3], areused to implement the SWC.

Ever since a long time ago, Arithmetic Coding (AC) has been proposed as the successor of

Huffman coding to implement source coding and shows near-entropy performance [4], [5], [6].

At the same time of high compression efficiency, the AC increases computational complexity

and noise sensitivity of the bitstream. To reduce computational complexity, Quasi-Arithmetic

Coding (QAC) has been introduced in [7]. To fight against noise sensitivity, redundancies are

usually reinjected into the bitstream by different means. In [8], redundancies are reinjected into

the bitstream in the form of parity-check bits. In [9], markers are inserted at known positions

in the sequence of source symbols. In [10], forbidden intervals are exploited for error detection.

These approaches fall into the so-called Error Detecting AC(EDAC). The EDAC can be coupled

with Automatic Repeat reQuest (ARQ) [11], [12], [13] or channel codes [13] to support error

correction. To realize Error Correcting AC (ECAC), sequential decoding of arithmetic codes

with forbidden intervals is proposed in [14], whose complexity is reduced in [15] by using

Trellis-Coded Modulation (TCM) and List Viterbi decoding Algorithm (LVA). A soft decoding

procedure is described in [16], whose counterpart for QAC appears in [17]. The Maximum A

Posteriori (MAP) decoding procedure is proposed and applied to image transmission [18], [19],

[20], [21].

Recently, the AC is also applied to implement the SWC. One approach is to allow overlapped

intervals, which mirrors the work in [10]. Such examples include Distributed Arithmetic Coding

(DAC) [22], [23] and Overlapped Quasi-Arithmetic Coding (OQAC) [24]. Another approach is

to puncture some bits of AC bitstream, e.g. Punctured Quasi-Arithmetic Coding (PQAC) [25],

which mirrors the work in [9]. There are also some variants ofthe DAC. The symmetric SWC is

implemented by the time-shared DAC (TS-DAC) [26]. The rate-compatible DAC is proposed in

[27]. Furthermore, decoder-driven adaptive DAC [28] is proposed to estimate source probabilities

on-the-fly.
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We note that the ECAC and the DAC in fact generalize the classic AC in reverse directions.

The ECAC encodes sourceX at ratesR ≥ H(X)/C ≥ H(X) by introducing forbidden intervals,

whereC is channel capacity. The forbidden intervals, corresponding to forbidden symbols, lead

to a longer codeword due to narrowed final interval and also inject redundancies into the resulting

bitstream. The decoder jointly exploits both the received bitstream and known channel parameters

to reconstruct sourceX. The DAC encodes sourceX at ratesH(X|Y ) ≤ R ≤ H(X) by allowing

overlapped intervals. The overlapped intervals, corresponding to ambiguous symbols, lead to a

shorter codeword due to enlarged final interval and also induce ambiguities in the resulting

bitstream. A soft joint decoder exploits both the received bitstream andY to reconstructX.

Though it is well-known that the classic AC can achieve source entropyH(X) theoretically,

it is not clear whether the DAC can achieve conditional entropy H(X|Y ). If no, what is the

performance limit of the DAC? Is it possible to improve its performance? If yes, how to realize

it? Intuitively, before answering these questions, one mayneed to know how many branches

will be generated during the DAC decoding. In addition, it may also be helpful to know the

distribution of Hamming distances between decoding branches and sourceX.

As the first step, to analyze the properties of the DAC, [29] introduces the concept of

codeword distribution, which seems promising for answering these questions. DAC codeword

distribution is a function defined over interval[0, 1). For equiprobable binary sources, both

codeword distribution along proper decoding paths and codeword distribution along wrong

decoding paths are researched. For codeword distribution along proper decoding paths, the

problem is formatted as solving a system of functional equations including four constraints

[29]. It is affirmed that rateR = 0.5 is a watershed: whenR > 0.5, DAC codeword distribution

is an unsmooth function; while whenR ≤ 0.5, DAC codeword distribution is a smooth function.

Especially, a closed form is obtained atR = 0.5. In spite of these achievements, it remains a very

difficult task to find the closed form of codeword distribution along proper decoding paths in

general. As for codeword distribution along wrong decodingpaths, only some simulation results

are reported in [29], while problem formulation remains an open issue. It deserves to point out

that the concept of codeword distribution can be easily extended to the ECAC.

This paper makes some advances on the work in [29]. Three approximation methods are

proposed for codeword distribution of equiprobable binarysources along proper decoding paths:

numeric approximation, polynomial approximation, and Gaussian approximation. Among them,
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numeric approximation is a general approach. At low rates (R ≤ 0.5), polynomial approximation

works well. To reduce computational complexity at very low rates, Gaussian approximation is

used as an alternative to polynomial approximation.

This paper is arranged as follows. In Section II, after a brief introduction to binary DAC

codec, DAC decoding process is analyzed in detail to show thesignificance of DAC codeword

distribution. Then the investigated problem is formulatedin Section III. Section IV, Section

V, and Section VI describe in detail numeric approximation,polynomial approximation, and

Gaussian approximation, respectively, where simulation results are also reported. Finally, Section

VII concludes this paper.

II. B INARY DISTRIBUTED ARITHMETIC CODING

A. Encoding

Consider a binary sourceX = {xi}Ii=1 with bias probabilityp = Pr(xi = 1). In the classic AC,

source symbolxi is iteratively mapped onto sub-intervals of[0, 1), whose lengths are proportional

to (1−p) andp, giving rateR = H(X). Instead, in the DAC [22], [23], sub-interval lengths are

proportional to enlarged probabilities(1 − p)γ andpγ, whereH(X|Y )/H(X) ≤ γ ≤ 1, giving

rateR = γH(X) ≥ H(X|Y ). For conciseness, we refer toγ as overlap coefficient hereinafter.

More specifically, symbolsxi = 0 and xi = 1 correspond to sub-intervals[0, (1 − p)γ) and

[1−pγ, 1), respectively. It means that to fit the[0, 1) interval, the sub-intervals have to be partially

overlapped. This overlapping leads to a larger final interval, and hence a shorter codeword.

However, as a cost, the decoder can not decodeX unambiguously withoutY .

Note that whenγ ≥ 1/C ≥ 1, whereC is channel capacity, it becomes the ECAC.

B. Decoding

To describe the decoding process, a ternary symbol set{0,A, 1} is defined, whereA represents

the ambiguous symbol. LetCX be DAC codeword and̃xi be thei-th decoded symbol, then

x̃i =



















0, 0 ≤ CX < 1− pγ

A, 1− pγ ≤ CX < (1− p)γ

1, (1− p)γ ≤ CX < 1

. (1)

After x̃i is decoded, ifx̃i = A, the decoder will perform a branching: two candidate branches

are generated, corresponding to two alternative symbolsxi = 0 and xi = 1. For each new
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branch, its metric is updated and the corresponding interval is selected for next iteration. To

reduce complexity, every time a symbol is decoded, the decoder uses theM-algorithm to keep

at mostM paths with the best partial metric, and prunes others [22], [23]. Finally, after all

source symbols are decoded, the path with the best metric is output as the estimate ofX. As for

detailed performance comparisons between DAC and LDPC-based SWC, please refer to [23].

C. Discussion

It deserves to point out that during DAC decoding, the metricof each path is indeed the

Hamming distance between this path and SIY . As we know, each DAC codeword defines a

set of possible decoding paths and each possible decoding path corresponds to a sequence of

decoded symbols. However, among all possible decoding paths, there is one and only one proper

path which corresponds to sourceX. Let X̃ = {x̃i}Ii=1 be a sequence of decoded symbols. Let

D(Y, X̃) be the Hamming distance betweenY and X̃. Similarly, D(X, X̃) and D(X, Y ) are

also defined. Obviously,

D(Y, X̃) ≤ D(X, Y ) +D(X, X̃). (2)

The task of a DAC decoder is in fact to find a pathX ′ that minimizesD(Y, X̃), i.e.

X ′ = argmin
X̃

D(Y, X̃). (3)

However, this is not always followed byD(X,X ′) = 0. If D(X,X ′) 6= 0, then a decoding

failure occurs. To find the probability of decoding failure,we need to know the distribution of

D(Y, X̃) andD(X, X̃).

Though it is very difficult to find the distribution ofD(Y, X̃) andD(X, X̃), this problem can

be tackled by means of DAC codeword distribution. As shown in[29], if we know codeword

distributions along proper and wrong decoding paths, it seems promising to find the number of

possible decoding paths and the distribution ofD(Y, X̃) andD(X, X̃).

The rest of this paper makes some advances on DAC codeword distribution along proper

decoding paths.

III. PROBLEM FORMULATION

To simplify the analysis, we consider an infinite-length, stationary, and equiprobable binary

sourceX = {xi}∞i=1. As p = 0.5, symbolsxi = 0 andxi = 1 correspond to sub-intervals[0, q)

and [1− q, 1) respectively, whereq = 0.5γ . The resulting rateR = γH(X) = γ.

June 11, 2018 DRAFT
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Fig. 1. Illustrations off(u), f0(u), andf1(u) for q = 1/
√
2. f(u) is symmetric aroundu = 0.5, i.e. f(u) = f(1−u). f(u),

f0(u), andf1(u) have the same shape.f(u) = (f0(u) + f1(u))/2. f0(u) can be obtained by first squeezingf(u) by q times

along x-axis and then strechingf(u) by 1/q times alongy-axis, i.e.f0(u) = f(u/q)/q. f1(u) can be obtained by shifting

f0(u) right by (1− q), i.e. f1(u) = f0(u− (1− q)). Due to the symmetry,f1(u) = f0(1−u). f(u), f0(u), andf1(u) intersect

at u = 0.5, i.e. f(0.5) = f0(0.5) = f1(0.5). Henceqf(0.5) = f(0.5/q).

Let CX be the DAC codeword ofX andf(u) (0 ≤ u < 1) be the distribution ofCX , then
∫ 1

0

f(u)du = 1. (4)

Due to the symmetry, we have

f(u) = f(1− u), 0 < u < 1. (5)

Symbolsx1 = 0 andx1 = 1 correspond to intervals[0, q) and [1− q, 1), respectively. Ifx1 = 0,

the remaining sequenceX2 = {xi}∞i=2 will be iteratively mapped onto the sub-intervals of[0, q);

otherwise,X2 will be iteratively mapped onto the sub-intervals of[1 − q, 1). Let C0
X2

be the

DAC codeword ofX2 givenx1 = 0 andf0(u) be the distribution ofC0
X2

, then
∫ q

0

f0(u)du = 1. (6)

SinceX is infinite-length and stationary,f0(u) must have the same shape asf(u), i.e.,

f0(u) = f(u/q)/q, 0 ≤ u < q. (7)

Similarly, let C1
X2

be the DAC codeword ofX2 given x1 = 1 and f1(u) be the distribution of

C1
X2

, then

f1(u) = f0(u− (1− q)) = f(
u− (1− q)

q
)/q, (1− q) ≤ u < 1. (8)

June 11, 2018 DRAFT



7

Due to the symmetry,

f1(u) = f0(1− u). (9)

The relations betweenf(u), f0(u), andf1(u) can be illustrated by Fig.1. Obviously,

f(u) = Pr(x1 = 0)f0(u) + Pr(x1 = 1)f1(u) = (f0(u) + f1(u))/2. (10)

Hence,f(u), f0(u), andf1(u) intersect atu = 0.5, i.e. f(0.5) = f0(0.5) = f1(0.5). Thus

qf(0.5) = f(0.5/q). (11)

A. Classic AC

Whenq = 0.5, it is just the classic AC. Then

f(u) =

{

f(2u), 0 ≤ u < 0.5

f(2u− 1), 0.5 ≤ u < 1
. (12)

It is easy to provef(u) ≡ 1 (0 ≤ u < 1). This is a uniform distribution, so the classic AC can

achieve source entropy theoretically.

B. Distributed AC

When 0.5 < q < 1, sub-intervals[0, q) and [1 − q, 1) are partially overlapped, sof(u) is a

piecewise-defined function.

1) 0 ≤ u < (1− q): It this interval,f1(u) = 0, so

f(u) = f0(u)/2 = f(u/q)/(2q). (13)

Sincef(0) = f(0/q)/(2q), we havef(0) = 0.

2) q ≤ u < 1: In this interval,f0(u) = 0, so

f(u) = f1(u)/2 = f(
u− (1− q)

q
)/(2q). (14)

3) 1− q ≤ u < q: In this interval, we have

f(u) =
f(u

q
) + f(u−(1−q)

q
)

2q
. (15)

June 11, 2018 DRAFT
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C. A Closed Form of f(u) at q = 1/
√
2

Generally, it is very difficult to obtain the closed form off(u). In [29], only one closed form

is obtained atq = 1/
√
2 (i.e. γ = 0.5):

f(u) =































u

3
√
2− 4

, 0 ≤ u ≤
√
2− 1

1

2−
√
2
,

√
2− 1 ≤ u ≤ 2−

√
2

1− u

3
√
2− 4

, 2−
√
2 ≤ u ≤ 1

. (16)

D. Zeros of f(u) at High Rates

It is proved in [29] that when0.5 < q ≤
√
5−1
2

(corresponds to0.6942 ≤ γ < 1), f( qn

q+1
) =

f(1− qn

q+1
) = 0, ∀n ∈ N.

IV. NUMERIC APPROXIMATION

Though a special closed form off(u) is found for p = γ = 0.5 in [29], the procedure is

very complex. In general, the closed form off(u) does not exist. As a universal approach, we

propose a numeric method for findingf(u). This method is described in detail below.

A. Discretization

We divide the interval[0, 1] into N uniform cells. Let∆ = 1/N . Thenf(u) can be approxi-

mated byf(n∆), wheren ∈ IN = {0, 1, ..., N}, given a largeN .

B. Initialization

Let f (t)(n∆) be the estimate off(n∆) after t iterations. Before iteration,f (0)(n∆) need to

be initialized. Though arbitrary initialization is allowed, we recommend uniform initialization,

i.e. f (0)(n∆) ≡ 1, wheren ∈ IN .

C. Iteration

Let L = ⌊N(1 − q)⌋ = N − ⌈Nq⌉ andH = ⌈Nq⌉. Then the iteration is run as follows.

June 11, 2018 DRAFT
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1) 0 ≤ n ≤ L: This corresponds to interval0 ≤ u ≤ (1− q), hence

f (t)(n∆) =
f (t−1)(h0,N(n/q)∆)

2q
, (17)

where

ha,b(x) =



















a, round(x) < a < b

round(x), a ≤ round(x) ≤ b

b, a < b < round(x)

. (18)

2) H ≤ n ≤ N: This corresponds to intervalq ≤ u ≤ 1. BecauseL+H = N ,

f (t)(n∆) = f (t)((N − n)∆). (19)

3) L < n < H: This corresponds to interval(1− q) < u < q, hence

f (t)(n∆) =
f (t−1)(h0,N(n/q)∆) + f (t−1)(h0,N(

n−L
q

)∆)

2q
. (20)

D. Normalization

Recall the constraint
∫ 1

0
f(u)du = 1, we have

N
∑

n=0

f (t)(n∆)∆ = 1, (21)

i.e.
N
∑

n=0

f (t)(n∆) = 1/∆ = N. (22)

Let
∑N

n=0 f
(t)(n∆) = Ω, thenf (t)(n∆) should be normalized as below:

f (t)(n∆) =
Nf (t)(n∆)

Ω
. (23)

E. Termination

We use the Mean Squared Error (MSE) between two successive iterations as a measurement

to terminate the iteration. Letδ be a small quantity. When

MSE(t) =
1

N + 1

N
∑

n=0

(f (t)(n∆)− f (t−1)(n∆))2 < δ, (24)

the iteration is terminated.
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Fig. 2. Simulation curves of numeric approximation tof(u), whereN = 105. All these results coincides with those given

in [29], meaning that numeric approximation is well justified. (a) Evolution off (t)(n∆) with respect tot for q = 1/
√
2. As t

increases,f (t)(n∆) converges tof(u). MSE(38) < 10−10. (b) Some results forq ∈ (0.5, (
√
5− 1)/2]. MSE(586) < 10−4 for

q = 0.51. MSE(70) < 10−4 for q = 0.55. MSE(51) < 10−4 for q = (
√
5−1)/2. (c) Some results forq ∈ ((

√
5−1)/2, 1/

√
2).

MSE(85) < 10−9 for q = (
√
5−1)/2+0.01. MSE(63) < 10−9 for q = 2/3. MSE(52) < 10−9 for q = 1/

√
2−0.01. (d) Some

results forq ∈ [1/
√
2, 1). MSE(39) < 10−10 for q = 0.8. MSE(54) < 10−10 for q = 0.9. MSE(540) < 10−9 for q = 0.99.
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F. Simulation Results

Fig. 2 includes some results regarding numeric approximation. All results reported in Fig. 2

are obtained withN = 105.

To show howf (t)(n∆) converges tof(u), the evolution off (t)(n∆) with t is plotted in Fig.

2(a). We find that after 38 iterations, successive MSE has been less than10−10.

It was affirmed in [29] that(
√
5 − 1)/2 and 1/

√
2 are two watersheds that divide interval

(0.5, 1) of q into three sub-intervals:(0.5, (
√
5 − 1)/2], ((

√
5 − 1)/2, 1/

√
2), and [1/

√
2, 1),

becausef(u) shows very different properties in these three sub-intervals. As in [29], for each

sub-interval ofq, some simulation results are reported in Figs. 2(b)-(d). All these results coincide

with those given in [29] perfectly. Fig. 2(b) confirms the zeros of f(u) at high rates. Fig. 2(d)

shows thatf(u) becomes smooth at low rates.

In different sub-intervals, numeric approximation shows very different simulation precision and

computational complexity. Firstly, we consider simulation precision. Forq ∈ (0.5, (
√
5− 1)/2],

tens of iterations are needed to make successive MSE less than 10−4, while for q ∈ ((
√
5 −

1)/2, 1/
√
2), tens of iterations have made successive MSE less than10−9. Forq ∈ [1/

√
2, 1), tens

of iterations can even make successive MSE less than10−10. Secondly, we consider computational

complexity. We find thatq = 1/
√
2 needs the fewest iterations. Asq departs from1/

√
2 (increase

or decrease), computational complexity increases, i.e. more iterations are needed to reach the

same successive MSE. Thirdly, asq approaches to 0.5 or 1, simulation precision is sharply

degraded, or in other words, computational complexity increases sharply. For example, when

q = 0.51, 586 iterations are needed to make successive MSE less than10−4, while for otherq

in the same sub-intervals (e.g. 0.55 and(
√
5− 1)/2), tens of iterations are enough to reach the

same precision. Similar phenomenon is also observed forq = 0.99.

It may be an interesting issue to improve simulation precision and accelerate convergence

speed off(u), especially forq close to 0.5 or 1.

V. POLYNOMIAL APPROXIMATION AT LOW RATES

It was affirmed in [29] thatf(u) is a smooth function whenq ≥ 1/
√
2, i.e. R ≤ 0.5. This

property suggests that polynomials may be good approximation to f(u) at low rates (R ≤ 0.5).

Below we propose polynomial approximation tof(u) for 1/
√
2 ≤ q < 1.
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To simplify the analysis, we exploit the symmetry and consider only the left half off(u)

f(u) =











f(u/q)/(2q), 0 ≤ u ≤ (1− q)

f(u
q
) + f(u−(1−q)

q
)

2q
, (1− q) ≤ u ≤ 0.5

. (25)

We rewrite (25) as

f(u) =

{

2qf(qu), 0 ≤ u ≤ v1

2qf(qu)− f(u− v1), v1 ≤ u ≤ 0.5
. (26)

wherevn = (1− q)/qn, n ∈ N. Note thatv1 < 0.5 whenq ≥ 1/
√
2. Hence,f(u) is a piecewise-

defined function over interval[0, 0.5].

At first, in sub-interval[0, v1], f(u) can be obtained by solving functional equationf(u) =

2qf(qu) [30]

f(u) = φ(u) = Θ(u)uλ, 0 ≤ u ≤ v1, (27)

whereλ = (1− γ)/γ andΘ(u) = Θ(uqk), ∀k ∈ Z.

Then, we need to determinef(u) in sub-interval[v1, 0.5]. Becausequ < u andu− v1 < u, it

is possible to recursively map sub-interval[v1, 0.5] onto sub-interval[0, v1] by scaling down or

shifting u, over whichf(u) has been given by (27), i.e.
{

f(qu) = φ(qu), v1 ≤ u ≤ v2

f(u− v1) = φ(u− v1), v1 ≤ u ≤ 2v1
. (28)

This is the key to solving this problem.

It is easy to prove thatu− v1 < qu for u ∈ [v1, 0.5]. Hence,

f(u) = 2qf(qu)− φ(u− v1), v1 ≤ u ≤ 2v1. (29)

On solving2v1 = 0.5, we obtainq = 0.8. Hereinafter, to facilitate our description, we divide

interval1/
√
2 ≤ q < 1 into two sub-intervals1/

√
2 ≤ q ≤ 0.8 (corresponding to0.5 ≤ 2v1) and

0.8 < q < 1 (corresponding to2v1 < 0.5).

A. 1/
√
2 ≤ q ≤ 0.8

In this sub-interval, since0.5 ≤ 2v1, we have

f(u) =

{

φ(u), 0 ≤ u ≤ v1

2qf(qu)− φ(u− v1), v1 ≤ u ≤ 0.5
. (30)

Hence, we need to consider only the term2qf(qu). Depending on the relations betweenvn and

0.5, this sub-interval can be further divided into three smaller sub-intervals.
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1) 0.5 ≤ v2: On solvingv2 = 0.5, we obtainq =
√
3− 1, so this sub-interval corresponds to

1/
√
2 ≤ q ≤

√
3 − 1. Since0.5 ≤ v2, we havequ ≤ v1 for u ∈ [v1, 0.5], i.e. f(qu) = φ(qu).

Rememberφ(u) ≡ 2qφ(qu). Thus

f(u) =

{

φ(u), 0 ≤ u ≤ v1

φ(u)− φ(u− v1), v1 ≤ u ≤ 0.5
. (31)

As affirmed in [29],f(u) is a smooth function forq ≥ 1/
√
2. Hence we approximateΘ(u) by

a constc and then obtain

f(u) ≈
{

cuλ, 0 ≤ u ≤ v1

cuλ − c(u− v1)
λ, v1 ≤ u ≤ 0.5

. (32)

Now we need to determinec. Let us integratef(u) over interval [0, 0.5]
∫ 0.5

0

f(u)du = c

(
∫ 0.5

0

uλdu−
∫ 0.5

v1

(u− v1)
λdu

)

=
c(uλ+1|0.50 − (u− v1)

λ+1|0.5v1
)

λ+ 1

=
c(0.5λ+1 − (0.5− v1)

λ+1)

λ+ 1
= 0.5. (33)

Thus,

c =
0.5(λ+ 1)

0.5λ+1 − (0.5− v1)λ+1
. (34)

Due toλ+ 1 = 1/γ,

c =
1

2γ(0.5(1/γ) − (0.5− v1)(1/γ))
. (35)

2) v2 < 0.5 ≤ v3: On solvingv3 = 0.5, we obtainq ≈ 0.77, so this sub-interval corresponds

to
√
3− 1 < q ≤ 0.77. At first, it can be obtained directly

f(u) =

{

φ(u), 0 ≤ u ≤ v1

φ(u)− φ(u− v1), v1 ≤ u ≤ v2
. (36)

Then, foru ∈ [v2, 0.5], we havequ ∈ [v1, v2], i.e. f(qu) = φ(qu)− φ(qu− v1). Thus

f(u) = 2qf(qu)− φ(u− v1)

= 2q(φ(qu)− φ(qu− v1))− φ(u− v1), v2 ≤ u ≤ 0.5. (37)

Because2qφ(qu− v1) = 2qφ(q(u− v2)) = φ(u− v2), we obtain

f(u) = φ(u)−
2

∑

i=1

φ(u− vi), v2 ≤ u ≤ 0.5. (38)
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Therefore, we can obtain the following approximation

f(u) ≈



























cuλ, 0 ≤ u ≤ v1

cuλ − c(u− v1)
λ, v1 ≤ u ≤ v2

cuλ − c

2
∑

i=1

(u− vi)
λ, v2 ≤ u ≤ 0.5

, (39)

where

c =
1

2γ(0.5(1/γ) −
∑2

i=1 (0.5− vi)(1/γ))
. (40)

3) v3 < 0.5 ≤ v4: On solvingv4 = 0.5, we obtainq ≈ 0.8, so this sub-interval corresponds

to 0.77 < q ≤ 0.8. By iterations, we can obtain

f(u) ≈



















































cuλ, 0 ≤ u ≤ v1

cuλ − c(u− v1)
λ, v1 ≤ u ≤ v2

cuλ − c

2
∑

i=1

(u− vi)
λ, v2 ≤ u ≤ v3

cuλ − c

3
∑

i=1

(u− vi)
λ, v3 ≤ u ≤ 0.5

, (41)

where

c =
1

2γ(0.5(1/γ) −
∑3

i=1 (0.5− vi)(1/γ))
. (42)

B. 0.8 < q < 1

The problem becomes very complex in this sub-interval becausef(u− v1) = φ(u− v1) does

not hold foru ∈ [2v1, 0.5] so that we need to deal with not only2qf(qu) but alsof(u− v1).

Let us consider a simple case first, i.e.v1 < 0.5− v1 ≤ v2, which corresponds to sub-interval

0.8 < q ≤
√

2/3. We haveu− v1 ∈ [v1, v2] for u ∈ [2v1, 0.5]. Hence

f(u− v1) = φ(u− v1)− φ(u− 2v1), 2v1 ≤ u ≤ 0.5. (43)

Therefore, the problem becomes

f(u) =



















2qf(qu), 0 ≤ u ≤ v1

2qf(qu)− φ(u− v1), v1 ≤ u ≤ 2v1

2qf(qu)− (φ(u− v1)− φ(u− 2v1)), 2v1 ≤ u ≤ 0.5

. (44)

Now we need to deal with only2qf(qu), which has been discussed in detail in Section V-A.
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Fig. 3. Comparisons of polynomial approximation with numeric approximation, whereN = 105 and δ = 10−10 for numeric

approximation. These results show that polynomial approximation fits numeric approximation very well. Especially, asq increases,

polynomial approximation almost coincides with numeric approximation. (a)q = 0.725. (b)q = 0.75. (c)q = 0.775. (d)q = 0.8.

For
√

2/3 < q < 1, the idea is the same but the procedure becomes more and more

complicated asq increases. Therefore, at very low rates, polynomial approximation is not a

good choice.

C. Simulation Results

Some examples of polynomial approximation have been included in Fig. 3. Considering the

complexity, only the results for1/
√
2 ≤ q ≤ 0.8 are reported. Fig. 3 shows that in general, the
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curves of polynomial approximation fit those of numeric approximation very well. Especially,

as q increases, the curves of polynomial approximation almost coincide with those of numeric

approximation. In addition, Fig. 3(a) also shows the affirmation in [29] may fail becauseq >

1/
√
2 does not guarantee smoothf(u). Nevertheless,f(u) does become less irregular asq

increases.

VI. GAUSSIAN APPROXIMATION AT VERY LOW RATES

As pointed out in Section V that asq increases, polynomial approximation tof(u) becomes

very complex. Thus a simpler approximation method is neededat very low rates. Through

experiments, we observe thatf(u) becomes bell-shaped at very low rates [29]. This phenomenon

suggests that a Gaussian function centered at 0.5 may be goodapproximation tof(u), i.e.

f(u) ≈ 1√
2πσ

exp

(

−(u− 0.5)2

2σ2

)

. (45)

Obviously, the problem now boils down to how to estimateσ2 for given q.

A. Estimation of σ2

Here we propose a simple method to estimateσ2 by exploitingqf(0.5) = f(0.5/q) [Fig. 1].

For a largeq, we have

qf(0.5) ≈ q√
2πσ

(46)

and

f(0.5/q) ≈ 1√
2πσ

exp

(

−(1− q)2

8q2σ2

)

. (47)

Hence,

q ≈ exp

(

−(1− q)2

8q2σ2

)

. (48)

Therefore

σ2 ≈ −(1− q)2

8q2 ln q
. (49)

B. Simulation Results

Some examples of Gaussian approximation are included in Fig. 4. These plots show that asq

increases, the curves of Gaussian approximation become closer and closer to those of numeric

approximation. Especially, whenq = 0.99, the curve of Gaussian approximation almost coincides

with that of numeric approximation. All these results confirm that Gaussian approximation does

work well at very low rates.
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Fig. 4. Comparisons of Gaussian approximation with numericapproximation, whereN = 105 for numeric approximation. As

q increases, Gaussian approximation becomes more and more accurate. (a)q = 0.85. δ = 10−10 for numeric approximation. (b)

q = 0.9. δ = 10−10 for numeric approximation. (c)q = 0.95. δ = 10−10 for numeric approximation (d)q = 0.99. δ = 10−9

for numeric approximation.

VII. CONCLUSION

This paper proposes three approximation methods for DAC codeword distribution of equiprob-

able binary sources along proper decoding paths. These methods are well justified by simulation

results. The related software is available on [31].

Nevertheless, there remain many open issues. Firstly, how to format the problem for codeword
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distribution along wrong decoding path? Secondly, for general (non-equiprobable orM-ary)

sources, how to format the problem? Thirdly, can we find the number of possible decoding paths

as well as the distributions ofD(X, X̃) andD(Y, X̃), for a given DAC code ofX. Finally, it is

an interesting issue to define codeword distribution for theECAC.
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