1

Approximation of DAC Codeword Distribution
for Equiprobable Binary Sources along Proper

Decoding Paths

Yong Fang

Abstract

Distributed Arithmetic Coding (DAC) is an effective implemtation of Slepian-Wolf coding, espe-
cially for short data blocks. To research its properties,dbncept of DAC codeword distribution along
proper and wrong decoding paths has been introduced. For d&éword distribution of equiprobable
binary sources along proper decoding paths, the problenfomastted as solving a system of functional
equations. However, up to now, only one closed form was obthat rate 0.5, while in general cases,
to find the closed form of DAC codeword distribution still rems a very difficult task. This paper
proposes three kinds of approximation methods for DAC caddwdistribution of equiprobable binary
sources along proper decoding paths: numeric approximgtimynomial approximation, and Gaussian
approximation. Firstly, as a general approach, a numerithodeis iterated to find the approximation
to DAC codeword distribution. Secondly, at rates lower tifah, DAC codeword distribution can be
well approximated by a polynomial. Thirdly, at very low ratea Gaussian function centered at 0.5

is proved to be a good and simple approximation to DAC coddwdistribution. A simple way to
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estimate the variance of Gaussian function is also propd3edty of simulation results are given to

verify theoretical analyses.
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I. INTRODUCTION

Consider the problem of Slepian-Wolf Coding (SWC) with dé=oSide Information (SI), i.e.
the encoder compresses discrete souada the absence of’, discretely-correlated Sl. Slepian-
Wolf theorem states that lossless compression is achiewatbtatesk? > H(X|Y') [1], where
H(X|Y) is the conditional entropy o given Y. Conventionally, channel codes, e.g., turbo
codes [[2] or Low-Density Parity-Check (LDPC) codes [3], aszd to implement the SWC.

Ever since a long time ago, Arithmetic Coding (AC) has beewppsed as the successor of
Huffman coding to implement source coding and shows netoyn performance_[4], 5], 16].
At the same time of high compression efficiency, the AC insesacomputational complexity
and noise sensitivity of the bitstream. To reduce companati complexity, Quasi-Arithmetic
Coding (QAC) has been introduced in [7]. To fight against easnsitivity, redundancies are
usually reinjected into the bitstream by different means|8], redundancies are reinjected into
the bitstream in the form of parity-check bits. In [9], markere inserted at known positions
in the sequence of source symbols.[In|[10], forbidden irtisrare exploited for error detection.
These approaches fall into the so-called Error Detecting BBAC). The EDAC can be coupled
with Automatic Repeat reQuest (ARQ) |11], [12], [13] or chah codes|[13] to support error
correction. To realize Error Correcting AC (ECAC), sequantlecoding of arithmetic codes
with forbidden intervals is proposed in_[14], whose compilexs reduced in[[15] by using
Trellis-Coded Modulation (TCM) and List Viterbi decodinggdrithm (LVA). A soft decoding
procedure is described in [16], whose counterpart for QA@eaps in[[17]. The Maximum A
Posteriori (MAP) decoding procedure is proposed and agppbemage transmission [18], [19],
[20], [21].

Recently, the AC is also applied to implement the SWC. Oneaggh is to allow overlapped
intervals, which mirrors the work in_[10]. Such exampleslinie Distributed Arithmetic Coding
(DAC) [22], [23] and Overlapped Quasi-Arithmetic Coding@®BC) [24]. Another approach is
to puncture some bits of AC bitstream, e.g. Punctured Qaa#imetic Coding (PQAC)[[25],
which mirrors the work in[[9]. There are also some variantthefDAC. The symmetric SWC is
implemented by the time-shared DAC (TS-DAC) [26]. The radeapatible DAC is proposed in
[27]. Furthermore, decoder-driven adaptive DACI[28] isgmeed to estimate source probabilities

on-the-fly.

June 11, 2018 DRAFT



We note that the ECAC and the DAC in fact generalize the aia&€i in reverse directions.
The ECAC encodes sourcé at ratesk > H(X)/C > H(X) by introducing forbidden intervals,
whereC' is channel capacity. The forbidden intervals, correspagdo forbidden symbols, lead
to a longer codeword due to narrowed final interval and algzimedundancies into the resulting
bitstream. The decoder jointly exploits both the receivigstleam and known channel parameters
to reconstruct sourc&. The DAC encodes source at ratesH (X |Y) < R < H(X) by allowing
overlapped intervals. The overlapped intervals, corredpg to ambiguous symbols, lead to a
shorter codeword due to enlarged final interval and alsodadambiguities in the resulting
bitstream. A soft joint decoder exploits both the receivadtieam andy'to reconstructX.

Though it is well-known that the classic AC can achieve sewntropyH (X) theoretically,
it is not clear whether the DAC can achieve conditional gutré/ (X|Y'). If no, what is the
performance limit of the DAC? Is it possible to improve itgfoemance? If yes, how to realize
it? Intuitively, before answering these questions, one megd to know how many branches
will be generated during the DAC decoding. In addition, itymeso be helpful to know the
distribution of Hamming distances between decoding bras@nd source .

As the first step, to analyze the properties of the DAC, [29foduces the concept of
codeword distribution, which seems promising for answegtimese questions. DAC codeword
distribution is a function defined over intervél, 1). For equiprobable binary sources, both
codeword distribution along proper decoding paths and wod# distribution along wrong
decoding paths are researched. For codeword distribulimmgaproper decoding paths, the
problem is formatted as solving a system of functional @quatincluding four constraints
[29]. It is affirmed that rate? = 0.5 is a watershed: wheR > 0.5, DAC codeword distribution
is an unsmooth function; while whek < 0.5, DAC codeword distribution is a smooth function.
Especially, a closed form is obtained/at= 0.5. In spite of these achievements, it remains a very
difficult task to find the closed form of codeword distributialong proper decoding paths in
general. As for codeword distribution along wrong decodiaths, only some simulation results
are reported in [29], while problem formulation remains gquem issue. It deserves to point out
that the concept of codeword distribution can be easilyrelgd to the ECAC.

This paper makes some advances on the work in [29]. Threeoxippation methods are
proposed for codeword distribution of equiprobable biresyrces along proper decoding paths:

numeric approximation, polynomial approximation, and €aan approximation. Among them,

June 11, 2018 DRAFT



numeric approximation is a general approach. At low rafes<(0.5), polynomial approximation
works well. To reduce computational complexity at very loatels, Gaussian approximation is
used as an alternative to polynomial approximation.

This paper is arranged as follows. In Sectloh IlI, after afbirdroduction to binary DAC
codec, DAC decoding process is analyzed in detail to shovsitpaficance of DAC codeword
distribution. Then the investigated problem is formulatedSection[Ill. Sectior_ 1V, Section
V] and Sectiori Ml describe in detail numeric approximatipolynomial approximation, and
Gaussian approximation, respectively, where simulatsults are also reported. Finally, Section

VIllconcludes this paper.

[I. BINARY DISTRIBUTED ARITHMETIC CODING

A. Encoding

Consider a binary sourc¥ = {z;}/_, with bias probabilityp = Pr(x; = 1). In the classic AC,
source symbat; is iteratively mapped onto sub-intervals|0f1), whose lengths are proportional
to (1 —p) andp, giving rateR = H(X). Instead, in the DAC[22]/[23], sub-interval lengths are
proportional to enlarged probabiliti€s — p)” and p”, where H(X|Y)/H(X) < v < 1, giving
rate R = vH(X) > H(X]Y). For conciseness, we refer toas overlap coefficient hereinafter.
More specifically, symbols;; = 0 and z; = 1 correspond to sub-intervalg, (1 — p)?) and
[1—p7, 1), respectively. It means that to fit ti@ 1) interval, the sub-intervals have to be partially
overlapped. This overlapping leads to a larger final inferasad hence a shorter codeword.
However, as a cost, the decoder can not decidenambiguously without”.

Note that wheny > 1/C > 1, where(C' is channel capacity, it becomes the ECAC.

B. Decoding

To describe the decoding process, a ternary symbdlset, 1} is defined, whered represents

the ambiguous symbol. L&ty be DAC codeword and; be thei-th decoded symbol, then
0, 0<Cx<1-—yp"

Ti=¢A 1—-p"<Cx<(1-p). Q)

1, (I-p)<Cx<l1
After z; is decoded, ift; = A, the decoder will perform a branching: two candidate brasch

are generated, corresponding to two alternative symbplss 0 and z; = 1. For each new
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branch, its metric is updated and the corresponding intesvaelected for next iteration. To
reduce complexity, every time a symbol is decoded, the dercoses thel/-algorithm to keep
at mostM paths with the best partial metric, and prunes others [223].[Finally, after all
source symbols are decoded, the path with the best metrigtsibas the estimate of. As for

detailed performance comparisons between DAC and LDP€ebS8VC, please refer to [23].

C. Discussion

It deserves to point out that during DAC decoding, the metficcach path is indeed the
Hamming distance between this path andYSIAs we know, each DAC codeword defines a
set of possible decoding paths and each possible decodthgcparesponds to a sequence of
decoded symbols. However, among all possible decodings ptitere is one and only one proper
path which corresponds to sourée Let X = {7;}L_, be a sequence of decoded symbols. Let
D(Y, X) be the Hamming distance betwe&hand X. Similarly, D(X, X) and D(X,Y) are
also defined. Obviously,

D(Y,X) < D(X,Y) + D(X, X). (2)
The task of a DAC decoder is in fact to find a path that minimizesD(Y, X), i.e.
X':argrr;%nD(Y,f(). 3)
However, this is not always followed b (X, X’) = 0. If D(X,X’) # 0, then a decoding
failure occurs. To find the probability of decoding failuvge need to know the distribution of
D(Y,X) and D(X, X).

Though it is very difficult to find the distribution ab(Y, X) and D(X, X), this problem can
be tackled by means of DAC codeword distribution. As showif2®), if we know codeword
distributions along proper and wrong decoding paths, itnsepromising to find the number of
possible decoding paths and the distribution/zfy, X) and D(X, X).

The rest of this paper makes some advances on DAC codewadribuli®on along proper

decoding paths.

I1l. PROBLEM FORMULATION

To simplify the analysis, we consider an infinite-lengttatisinary, and equiprobable binary
sourceX = {z;}°,. As p = 0.5, symbolsz; = 0 andz; = 1 correspond to sub-intervals, ¢)

and|[1 — ¢, 1) respectively, wherg = 0.57. The resulting rate? = vH(X) = ~.

June 11, 2018 DRAFT



25

15

Fig. 1. lllustrations off (u), fo(u), and fi(u) for ¢ = 1/v/2. f(u) is symmetric around: = 0.5, i.e. f(u) = f(1 —u). f(u),
fo(u), and f1(u) have the same shapé(u) = (fo(u) + f1(w))/2. fo(u) can be obtained by first squeezirfgu) by ¢ times
along z-axis and then streching(u) by 1/¢ times alongy-axis, i.e. fo(u) = f(u/q)/q. fi(u) can be obtained by shifting
fo(u) right by (1 —gq), i.e. fi(u) = fo(u—(1—gq)). Due to the symmetryf; (uv) = fo(1—u). f(u), fo(u), and fi(u) intersect
atu = 0.5, i.e. £(0.5) = £5(0.5) = f1(0.5). Henceqf(0.5) = f(0.5/q).

Let C'xy be the DAC codeword oX and f(u) (0 < u < 1) be the distribution of”y, then

/0 fu)du = 1. 4)

flw)=f1-u), 0<u<l. (5)

Due to the symmetry, we have

Symbolsz; = 0 andz; = 1 correspond to interval®, ¢) and[1 — ¢, 1), respectively. Ifz; = 0,
the remaining sequence, = {z;}°, will be iteratively mapped onto the sub-intervals|0fq);
otherwise, X, will be iteratively mapped onto the sub-intervals [@#f— ¢,1). Let C%, be the
DAC codeword ofX, givenx; = 0 and fy(u) be the distribution of”$ ,» then

| fwrau =1 ©)
Since X is infinite-length and stationary,(u) must have the same shape fd%), i.e
folu) = f(u/q)/a, O<u<q (7)

Similarly, let C}Q be the DAC codeword oX, givenx; = 1 and f;(u) be the distribution of

C%,, then
u—(1-gq)

fi(u) = fo(u— (1 —q)) = f( q

e, (1—-q <u<l (8)
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Due to the symmetry,

fi(u) = fo(1 —u). 9)
The relations betweelfi(u), fo(u), and f;(u) can be illustrated by Fig.1. Obviously,
f(u) = Pr(zy = 0) fo(u) + Pr(zy = 1) fi(u) = (fo(u) + fi(u))/2. (10)

Hence, f(u), fo(u), and fi(u) intersect atu = 0.5, i.e. f(0.5) = fo(0.5) = £1(0.5). Thus

qf(0.5) = f(0.5/q). (11)

A. Classic AC
Wheng = 0.5, it is just the classic AC. Then
{f(Qu), 0<u<05
u) =

Fu—1), 05<u<l
It is easy to provef(u) =1 (0 < u < 1). This is a uniform distribution, so the classic AC can

(12)

achieve source entropy theoretically.

B. Distributed AC

When 0.5 < ¢ < 1, sub-intervals0,¢) and[1 — ¢, 1) are partially overlapped, sf(u) is a
piecewise-defined function.
1) 0 <u<(1—gq): Itthisinterval, f;(u) =0, so

f(u) = fou)/2 = f(u/q)/(2q). (13)
Since f(0) = f(0/q)/(2q), we havef(0) = 0.

2) ¢ <u < 1: In this interval, fo(u) = 0, so

flu) = fi(u)/2 = f(———)/(2q). (14)

3) 1 —¢q<wu<gq Inthis interval, we have

uy 4 u—(1—q)
O EEAAR ) 15)
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C. A Closed Formof f(u) at ¢ = 1/v/2

Generally, it is very difficult to obtain the closed form 6fu). In [29], only one closed form
is obtained at; = 1/v/2 (i.e. vy = 0.5):

( Uu

N 0<u<+v2-1
flu) = 2_1\/5, V2—-1<u<2-vV2 (16)
3\1[_11, 2-V2<u<l1

D. Zeros of f(u) at High Rates

It is proved in [29] that wher).5 < ¢ < Y31 (corresponds t0.6942 < v < 1), f(47) =
f(1—-22)=0,VneN.

q+1

IV. NUMERIC APPROXIMATION

Though a special closed form ¢f(u) is found forp = v = 0.5 in [29], the procedure is
very complex. In general, the closed form ffu) does not exist. As a universal approach, we

propose a numeric method for findirfdu). This method is described in detail below.

A. Discretization

We divide the interval0, 1] into NV uniform cells. LetA = 1/N. Then f(u) can be approxi-
mated byf(nA), wheren € Zy = {0, 1, ..., N}, given a largeN.

B. Initialization

Let /) (nA) be the estimate of (nA) aftert iterations. Before iterationf® (nA) need to
be initialized. Though arbitrary initialization is allo@gwe recommend uniform initialization,
i.e. fO(nA) =1, wheren € Zy.

C. lteration

Let L= |N(1—q)] = N — [Nq] and H = [Nq]. Then the iteration is run as follows.
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1) 0 <n < L: This corresponds to interval< u < (1 — ¢), hence
U (hon(n/q)A)

(t) -
FOna) T, (17)
where
a, round(x) < a <b
haop(z) = < round(z), a <round(z)<b. (18)
b, a < b < round(z)
2) H <n < N: This corresponds to interval< u < 1. BecauseL + H = N,
FOnA) = fO(N —n)A). (19)
3) L <n < H: This corresponds to intervél — ¢) < u < ¢, hence
D (ho v(n/a)A) + FED(he v(P=L)A
f(t)(nA) _ f (hon(n/q)A) + f (ho.n( 7 ) ) (20)
2q
D. Normalization
Recall the constrainfo1 f(u)du =1, we have
N
> fOma)a =1, (21)
n=0
ie.
N
> fOmA)=1/A=N. (22)
n=0
Let N f@(nA) = Q, then f(nA) should be normalized as below:
®)
f(t) (nA) = NfT(nA) (23)

E. Termination

We use the Mean Squared Error (MSE) between two successiaidins as a measurement

to terminate the iteration. Let be a small quantity. When

N
MSE® = N%l > (F9mA) = fmA))? <o, 24
n=0

the iteration is terminated.
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Fig. 2. Simulation curves of numeric approximation ft6u), where N = 10°. All these results coincides with those given
in [29], meaning that numeric approximation is well justifi€a) Evolution Off(t)(nA) with respect tat for ¢ = 1/v/2. Ast
increasesf™® (nA) converges tof (u). MSE®® < 10719, (b) Some results fog € (0.5, (v/5 — 1)/2]. MSE®®9) < 10~ for
q=0.51. MSE(™ < 10 for ¢ = 0.55. MSE®Y) < 107* for ¢ = (v/5—1)/2. (c) Some results fog € ((v/5—1)/2,1/v/2).
MSE®® < 107 for ¢ = (v/5—1)/2+0.01. MSE(®® < 107 for ¢ = 2/3. MSE®? < 10~° for ¢ = 1/v/2—0.01. (d) Some
results forg € [1/v/2,1). MSE®? < 107 for ¢ = 0.8. MSE®® < 1071° for ¢ = 0.9. MSE®**®) < 10~ for ¢ = 0.99.
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F. Smulation Results

Fig.[d includes some results regarding numeric approxanatll results reported in Fid.] 2
are obtained withV = 10°.

To show howf®(nA) converges tof (u), the evolution off® (nA) with ¢ is plotted in Fig.
[2(a). We find that after 38 iterations, successive MSE has hess thanl0—1°,

It was affirmed in[[29] thatv/5 — 1)/2 and 1/+/2 are two watersheds that divide interval
(0.5,1) of ¢ into three sub-intervals(0.5, (v/5 — 1)/2], ((+/5 — 1)/2,1/+/2), and [1/v/2,1),
becausef(u) shows very different properties in these three sub-intervas in [29], for each
sub-interval ofy, some simulation results are reported in Figs. 2(b)-(d)t#dse results coincide
with those given in[[29] perfectly. Fid. 2(b) confirms the agrof f(u) at high rates. Fid.12(d)
shows thatf(u) becomes smooth at low rates.

In different sub-intervals, numeric approximation showspdifferent simulation precision and
computational complexity. Firstly, we consider simulatiorecision. Fory € (0.5, (v/5 — 1)/2],
tens of iterations are needed to make successive MSE lesslthd, while for ¢ € ((v/5 —
1)/2,1//2), tens of iterations have made successive MSE lessilttrah Forg € [1/v/2,1), tens
of iterations can even make successive MSE lessthalf. Secondly, we consider computational
complexity. We find tha = 1/+/2 needs the fewest iterations. Asleparts froml /+/2 (increase
or decrease), computational complexity increases, i.genterations are needed to reach the
same successive MSE. Thirdly, asapproaches to 0.5 or 1, simulation precision is sharply
degraded, or in other words, computational complexity @ases sharply. For example, when
q = 0.51, 586 iterations are needed to make successive MSE lesslthanwhile for otherq
in the same sub-intervals (e.g. 0.55 ards — 1)/2), tens of iterations are enough to reach the
same precision. Similar phenomenon is also observed 910.99.

It may be an interesting issue to improve simulation precisind accelerate convergence

speed off(u), especially forg close to 0.5 or 1.

V. POLYNOMIAL APPROXIMATION AT LOW RATES

It was affirmed in [[29] thatf(u) is a smooth function whep > 1/v/2, i.e. R < 0.5. This
property suggests that polynomials may be good approximati /() at low rates R < 0.5).
Below we propose polynomial approximation féu) for 1/v/2 < ¢ < 1.
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To simplify the analysis, we exploit the symmetry and coasidnly the left half of f(u)

fu/a)/(2q), 0<u<(l—gq)
u) = u u=(1=q) . 25
R CASTE TR s
We rewrite [25) as
{qu(qu), 0<u<u
u) = . (26)
2qf(qu) — flu—v1), vy <u<0.5

wherev,, = (1—¢)/q" n € N. Note thatv; < 0.5 wheng > 1/+/2. Hence,f(u) is a piecewise-
defined function over intervabD, 0.5].
At first, in sub-intervall0, v,], f(u) can be obtained by solving functional equatipfu) =
2qf(qu) [30]
fu) = ¢(u) =B, 0<u<w, 27)
where\ = (1 —~)/y andO(u) = O(uq"), Vk € Z.
Then, we need to determinwu) in sub-intervalfv;, 0.5]. Becauseju < v andu — vy < u, it

is possible to recursively map sub-interyaj, 0.5] onto sub-interval0, v,] by scaling down or
shifting u, over which f(u) has been given by (27), i.e.

flqu) = ¢(qu), v <u< vy
) (28)
flu—v1) =o(u—v1), v <u<2
This is the key to solving this problem.
It is easy to prove that — v; < qu for u € [v1,0.5]. Hence,
flu) =2qf(qu) — p(u—v1), v <u< 20 (29)

On solving2v; = 0.5, we obtaing = 0.8. Hereinafter, to facilitate our description, we divide
interval 1/v/2 < ¢ < 1 into two sub-intervald /v/2 < ¢ < 0.8 (corresponding t@.5 < 2v;) and
0.8 < ¢ < 1 (corresponding t@uv; < 0.5).

A 1/1/2<¢<08

In this sub-interval, sincé.5 < 2v;, we have

¢(U), 0 S u S V1
-

20f(qu) — d(u—v1), n<u<05
Hence, we need to consider only the te2gy(qu). Depending on the relations betwegnand

(30)

0.5, this sub-interval can be further divided into three ldenasub-intervals.
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1) 0.5 < vy: On solvingv, = 0.5, we obtaing = /3 — 1, so this sub-interval corresponds to
1/v2 < ¢ < /3 —1. Since0.5 < vy, we havequ < v; for u € [v1,0.5], i.e. f(qu) = ¢(qu).
Remember(u) = 2qp(qu). Thus

(b(u)v O S u S V1
flu) = .
d(u) —p(u—wvy), vy <u<05
As affirmed in [29], f(u) is a smooth function for; > 1/1/2. Hence we approximat®(u) by

(31)

a constc and then obtain

cu)‘, 0<u<nm
f(u) =~ . (32)
cu* —c(u—v)*, v <u<05
Now we need to determine Let us integratef(u) over interval [, 0.5]
0.5 0.5 0.5
flu)du = ¢ (/ urdu — / (u— Ul))‘du)
0 0 v1
B C(u)\+1|(0].5 _ (u _ UI)A+1 215)
B A+ 1
c(0.5M1 — (0.5 — vy)M1)
A+1 (33)
Thus,
0.5(A+1)
= . 34
€T 0.5 (0.5 — vy (34)
Due toA+1 =1/,
1
c= (35)

27(0.50/7) — (0.5 — vy) /M)’
2) v3 < 0.5 < w3: On solvingvs = 0.5, we obtaing ~ 0.77, so this sub-interval corresponds
to V3 — 1 < ¢ < 0.77. At first, it can be obtained directly

o(u), 0<u<u
fu) = { | (36)
P(u) — o(u—wv1), v1<u<wy
Then, foru € [vg, 0.5], we havequ € (v, vs], i.e. f(qu) = ¢(qu) — ¢(qu — v1). Thus
flu) = 2qf(qu) — ¢(u—v1)
= 2q(o(qu) — d(qu —v1)) — d(u —v1), vy <u <0.5. (37)
Becauseq¢(qu — v1) = 2qo(q(u — v9)) = ¢(u — vy), we obtain
2
flu) = o(u) — Z dlu—1v;), v <u<0.5. (38)

i=1
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Therefore, we can obtain the following approximation
(cu?, 0<u<uv

Flu) ~ cu’ — clu —vp)?, v < u< vy (39)

Y

2
cu® — CZ (u—v)*, v <u<05
\ i=1

where
1

CcC = .
27(0.5/0) — 372 (0.5 — v;) /)
3) v3 < 0.5 < w4 On solvingv, = 0.5, we obtaing ~ 0.8, so this sub-interval corresponds

(40)

to 0.77 < ¢ < 0.8. By iterations, we can obtain

(cu’\, 0<u<wy
cu’ — clu —vp)?, v <u < vy
2
flu) = cu’\—cZ(u—vi))‘, vy <u < ws, (41)

where

= 3 : (42)
27(0.5/7 =37 (0.5 — v;)1/)

B. 08<¢g<1
The problem becomes very complex in this sub-interval beeglu — v;) = ¢(u — v1) does
not hold foru € [2v,0.5] so that we need to deal with not oty f(qu) but alsof(u — vy).
Let us consider a simple case first, ig.< 0.5 — v; < vy, Which corresponds to sub-interval
0.8 < ¢ < +/2/3. We haveu — v; € [vy,v5] for u € [2v;,0.5]. Hence
flu—v) =d(u—v1) — Pp(u—2v1), 2v; <u<0.5. (43)
Therefore, the problem becomes
2qf(qu), 0<u<uy
fu) =< 2qf(qu) — Pp(u — vy), v <u <20 . (44)

2qf(qu) — (¢p(u—v1) — p(u — 2v1)), 2v; <u <05
Now we need to deal with onlgqf(qu), which has been discussed in detail in Seclion]V-A.
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Fig. 3. Comparisons of polynomial approximation with nuimeapproximation, whereV = 10° and§ = 10~'° for numeric
approximation. These results show that polynomial appnation fits numeric approximation very well. Especiallygascreases,
polynomial approximation almost coincides with numeriprgximation. (a)g = 0.725. (b)g = 0.75. (c)q = 0.775. (d)q = 0.8.

For \/2/3 < ¢ < 1, the idea is the same but the procedure becomes more and more
complicated as; increases. Therefore, at very low rates, polynomial agpration is not a

good choice.

C. Smulation Results

Some examples of polynomial approximation have been irclud Fig.[3. Considering the

complexity, only the results for/v/2 < ¢ < 0.8 are reported. Fid.]3 shows that in general, the
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curves of polynomial approximation fit those of numeric apmation very well. Especially,
as g increases, the curves of polynomial approximation almostaide with those of numeric
approximation. In addition, Fid.] 3(a) also shows the afftiorain [29] may fail because >

1/v/2 does not guarantee smoofi{u). Neverthelessf(u) does become less irregular as

increases.

VI. GAUSSIAN APPROXIMATION AT VERY Low RATES

As pointed out in SectionV that asincreases, polynomial approximation fdu) becomes
very complex. Thus a simpler approximation method is neeateslery low rates. Through
experiments, we observe thitu) becomes bell-shaped at very low rates [29]. This phenomenon

suggests that a Gaussian function centered at 0.5 may beagppodximation tof (u), i.e.

1 (u—0.5)?
fu) ~ N exp (—T) ) (45)

Obviously, the problem now boils down to how to estimatefor given g.

A. Estimation of o2

Here we propose a simple method to estimatedy exploitingqf(0.5) = f(0.5/q) [Fig. [J.

For a largeg, we have

4f(0.5) ~ qu (46)
and
1 (1-1q)?
Hence,
1 _ 2
q ~ exp (—(8(]2;‘[2) ) : (48)
Therefore
. (1—g)p
U2N—8q21nq. (49)

B. Smulation Results

Some examples of Gaussian approximation are included irdkighese plots show that gs
increases, the curves of Gaussian approximation becorsercémd closer to those of numeric
approximation. Especially, when= 0.99, the curve of Gaussian approximation almost coincides
with that of numeric approximation. All these results canfithat Gaussian approximation does

work well at very low rates.
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Fig. 4. Comparisons of Gaussian approximation with numapieroximation, whereV = 10° for numeric approximation. As
g increases, Gaussian approximation becomes more and managx (a)y = 0.85. § = 10~ '° for numeric approximation. (b)
g =0.9. 6 = 107'° for numeric approximation. (cy = 0.95. § = 10~'° for numeric approximation (dy = 0.99. § = 10~°

for numeric approximation.

VIlI. CONCLUSION

This paper proposes three approximation methods for DA@wod distribution of equiprob-
able binary sources along proper decoding paths. Theseodwettte well justified by simulation
results. The related software is available onl [31].

Nevertheless, there remain many open issues. Firstly, bdarmat the problem for codeword
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distribution along wrong decoding path? Secondly, for ganéon-equiprobable oi/-ary)

sources, how to format the problem? Thirdly, can we find thalmer of possible decoding paths
as well as the distributions db(X, X) and D(Y, X), for a given DAC code ofX. Finally, it is

an interesting issue to define codeword distribution for EGAC.
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