Skip to main content

HMM-Based Traffic State Prediction and Adaptive Routing Method in VANETs

  • Conference paper
  • First Online:
Book cover Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

As the number of vehicles increases, the traffic environment becomes more complicated. It is important to find a routing method for different scenarios in the vehicular ad hoc networks (VANETs). Although there are many routing methods, they rarely consider multiple road traffic states. In this paper, we propose a traffic state prediction method based on Hidden Markov Model (HMM), and then choose different routing methods according to different traffic states. Since we are aware that GPS may cause measurement errors, Kalman Filter is used to estimate the observation, which makes observation more accurate. For different road states, we can make appropriate methods to improve routing performance. When the road is in rush hour, we will use Extended Kalman Filter to predict vehicle information in a short time to reduce the number of broadcasts, which can alleviate channel load. The result show that our method is useful for reducing the number of packets and improving the delivery rate.

Supported by National Natural Science Foundation of China with grant number [61701162].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karagiannis, G., Altintas, O., Ekici, E., et al.: Vehicular networking: a survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Commun. Surv. Tutor. 13(4), 584–616 (2011)

    Article  Google Scholar 

  2. Jerbi, M., Senouci, S.M., Rasheed, T., et al.: Towards efficient geographic routing in urban vehicular networks. IEEE Trans. Veh. Technol. 58(9), 5048–5059 (2009)

    Article  Google Scholar 

  3. Jayachandran, S., Jothi, J.D., Krishnan, S.R.: A case study on various routing strategies of VANETs. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom 2011. CCIS, vol. 269, pp. 353–362. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29219-4_41

    Chapter  Google Scholar 

  4. Bala, R., Krishna, C.R.: Performance analysis of topology based routing in a VANET. In: International Conference on Advances in Computing. IEEE (2014)

    Google Scholar 

  5. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, MobiCom 2000, pp. 243–254. ACM, New York (2000)

    Google Scholar 

  6. Togou, M.A., Hafid, A., Khoukhi, L.: SCRP: stable CDS-based routing protocol for urban vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 1–10 (2016)

    Google Scholar 

  7. Younes, M.B., Boukerche, A., Rom’An-Alonso, G.: An intelligent path recommendation protocol (ICOD) for VANETs. Comput. Netw. 64(may 8), 225–242 (2014)

    Article  Google Scholar 

  8. Reza, A.T., Kumar, T.A., Sivakumar, T.: Position Prediction based Multicast Routing (PPMR) using Kalman filter over VANET. In: IEEE International Conference on Engineering & Technology. IEEE (2016)

    Google Scholar 

  9. Ning, L., Jose-Fernan, M.O., Hernandez, D.V., et al.: probability prediction-based reliable and efficient opportunistic routing algorithm for VANETs. IEEE/ACM Trans. Netw. 1–15 (2018)

    Google Scholar 

  10. Liu, C., Zhang, G., Guo, W., et al.: Kalman prediction-based neighbor discovery and its effect on routing protocol in vehicular ad hoc networks. IEEE Trans. Intell. Transp. Syst. 1–11 (2019)

    Google Scholar 

  11. Tang, Y., Cheng, N., Wu, W., et al.: Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Trans. Veh. Technol. 68(4), 3967–3979 (2019)

    Article  Google Scholar 

  12. Bhatia, J., Dave, R., Bhayani, H., et al.: SDN-based real-time urban traffic analysis in VANET environment. Comput. Commun. 149, 162–175 (2019)

    Article  Google Scholar 

  13. Chaib, N., Oubbati, O.S., Bensaad, M.L., et al.: BRT: bus-based routing technique in urban vehicular networks. IEEE Trans. Intell. Transp. Syst. PP(99), 1–13 (2019)

    Google Scholar 

  14. Oubbati, O.S., Chaib, N., Lakas, A., et al.: U2RV: UAV-assisted reactive routing protocol for VANETs. Int. J. Commun. Syst. PP(8), 1–13 (2019)

    Google Scholar 

  15. Liu, J., Wan, J., Jia, D., et al.: High-efficiency urban traffic management in context-aware computing and 5G communication. IEEE Commun. Mag. 55, 34–40 (2017)

    Article  Google Scholar 

  16. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  17. Mehra, R.: On the identification of variances and adaptive Kalman filtering. IEEE Trans. Autom. Control 15, 175–184 (1970)

    Article  MathSciNet  Google Scholar 

  18. Perkins, C.: Ad hoc on-demand routing vector (AODV) routing. Rfc (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, K., Ding, X., Xu, J., Yang, F., Zhao, C. (2021). HMM-Based Traffic State Prediction and Adaptive Routing Method in VANETs. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-030-67540-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67540-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67539-4

  • Online ISBN: 978-3-030-67540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics