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Abstract. We propose a new variant of nonnegative matrix factoriza-
tion (NMF), combining separability and sparsity assumptions. Separa-
bility requires that the columns of the first NMF factor are equal to
columns of the input matrix, while sparsity requires that the columns of
the second NMF factor are sparse. We call this variant sparse separa-
ble NMF (SSNMF), which we prove to be NP-complete, as opposed to
separable NMF which can be solved in polynomial time. The main mo-
tivation to consider this new model is to handle underdetermined blind
source separation problems, such as multispectral image unmixing. We
introduce an algorithm to solve SSNMF, based on the successive nonneg-
ative projection algorithm (SNPA, an effective algorithm for separable
NMF), and an exact sparse nonnegative least squares solver. We prove
that, in noiseless settings and under mild assumptions, our algorithm
recovers the true underlying sources. This is illustrated by experiments
on synthetic data sets and the unmixing of a multispectral image.

Keywords: Nonnegative Matrix Factorization · Sparsity · Separability.

1 Introduction

Nonnegative Matrix Factorization (NMF) is a low-rank model widely used for
feature extraction in applications such as multispectral imaging, text mining, or
blind source separation; see [8,6] and the references therein. Given a nonnegative
data matrix M ∈ Rm×n

+ and a factorization rank r, NMF consists in finding two
nonnegative matrices W ∈ Rm×r

+ and H ∈ Rr×n
+ such that M ≈WH. NMF can

be formalized as the following optimization problem:

min
W≥0,H≥0

‖M −WH‖2F . (1)

In this paper, we use the Frobenius norm to measure the quality of the approxi-
mation. Although other measures are possible, the Frobenius norm is by far the
most commonly used, because it assumes Gaussian noise (which is reasonable in
many real-life applications) and allows for efficient computations [8].

One of the advantages of NMF over similar methods such as principal com-
ponent analysis (PCA) is that the nonnegativity constraint favors a part-based
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2 N. Nadisic et al.

representation [13], which is to say that the factors are more easily interpretable,
in particular when they have a physical meaning. If each column of M repre-
sents a data point, then each corresponding column of H contains the coeffi-
cients to reconstruct it from the r atoms represented by the columns of W , since
M(:, j) ≈ WH(:, j) for all j. Every data point is therefore expressed as a linear
combination of atoms. For example, when using NMF for multispectral unmix-
ing, a data point is a pixel, an atom is a specific material, and each column
of H contains the abundance of these materials in the corresponding pixel; see
Section 5.2 for more details. Geometrically, the atoms (columns of W ) can be
seen as r vertices whose convex hull contains the data points (columns of M),
under appropriate scaling.

1.1 Separability

In general, computing NMF is NP-hard [19]. However, Arora et al. [2] proved
that NMF is solvable in polynomial time under the separability assumption on
the input matrix.

Definition 1. A matrix M is r-separable if there exists a subset of r columns of
M , indexed by J , and a nonnegative matrix H ≥ 0, such that M = M(:,J )H.

Equivalently, M is r-separable if M has the form M = W [Ir, H
′]Π, where Ir is

the identity matrix of size r, H ′ is a nonnegative matrix, and Π is a permutation.
Separable NMF consists in selecting the right r columns ofM such thatM can be
reconstructed perfectly. In other words, it consists in finding the atoms (columns
of W ) among the data points (columns of M).

Problem 1 (Separable NMF). Given a r-separable matrix M , find W = M(:,J )
with |J | = r and H ≥ 0 such that M = WH.

Note that, ifW is known, the computation of H is straightforward: it is a convex
problem that can be solved using any nonnegative least squares (NNLS) solver
(for example, it can be solved with the Matlab function lsqnonneg). However,
the solution is not necessarily unique, unless W is full rank.

In the presence of noise, which is typically the case in real-life applications,
this problem is called near-separable NMF and is also solvable in polynomial
time given that the noise level is sufficiently small [2]. In this case, we are given
a near-separable matrix M ≈M(:,J )H where |J | = r and H ≥ 0.

1.2 Successive Nonnegative Projection Algorithm

Various algorithms have been developed to tackle the (near-)separable NMF
problem. Some examples are the successive projections algorithm (SPA) [1], the
fast canonical hull algorithm [12], or the successive nonnegative projections algo-
rithm (SNPA) [7]. Such algorithms start with an empty matrixW and a residual
matrix R = M , and then alternate between two steps: a greedy selection of one
column of R to be added to W , and an update of R using M and the columns
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Algorithm 1: SNPA
Input: A near-separable matrix M ∈ Rm×n, the number r of columns to be

extracted, and a strongly convex function f with f(0) = 0 (by default,
f(x) = ‖x‖22).

Output: A set of r indices J , and a matrix H ∈ Rr×n+ such that
M ≈M(:,J )H.

1 Init R←M
2 Init J = {}
3 Init t = 1
4 while R 6= 0 & t ≤ r do
5 p = argmaxj f(R(:, j))

6 J = J ∪ {p}
7 foreach j do
8 H∗(:, j) = argmin

h∈∆
f(M(:, j)−M(:,J )h)

9 R(:, j) =M(:, j)−M(:,J )H∗(:, j)
10 t = t + 1

extracted so far. As SNPA was shown, both theoretically and empirically, to
perform better and to be more robust than its competitors [7], it is the one we
study here in detail. Moreover, SNPA is able to handle the underdetermined
case when rank(W ) < m which will be key for our problem setting (see below
for more details).

SNPA is presented in Algorithm 1. SNPA selects, at each step, the column
of M maximizing a function f (which can be any strongly convex function such
that f(0) = 0, and f = ||.||22 is the most common choice). Then, the columns of
M are projected onto the convex hull of the origin and the columns extracted
so far, see step 8 where we use the notation

∆ =
{
h
∣∣ h ≥ 0,

∑
i

hi ≤ 1
}
,

whose dimension is clear from the context. After r steps, given that the noise is
sufficiently small and that the columns of W are vertices of conv(W ), SNPA is
guaranteed to identifyW . An important point is that SNPA requires the columns
of H to satisfy ‖H(:, j)‖1 ≤ 1 for all j, where ‖x‖1 =

∑
i |xi| is the `1 norm.

This assumption can be made without loss of generality by properly scaling the
columns of the input matrix to have unit `1 norm; see the discussion in [7].

1.3 Model Limitations

Unfortunately, some data sets cannot be handled successfully by separable NMF,
even when all data points are linear combinations of a subset of the input ma-
trix. In fact, in some applications, the columns of the basis matrix W , that is,
the atoms, might not be vertices of conv(W ). This may happen when one seeks
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Fig. 1. On the left (a), all vertices are exterior, and SNPA is assured to identify them
all. On the right (b), the data points are 2-sparse combinations of 4 points, one of
which (vertex 4) is “interior” hence it cannot be identified with separable NMF.

a matrix W which is not full column rank. For example, in multispectral unmix-
ing, m is the number of spectral bands which can be smaller than r, which is
the number of materials present in the image; see Section 5.2 for more details.
Therefore, it is possible for some columns of W to be contained in the convex
hull of the other columns, that is, to be additive linear combinations of others
columns ofW ; see Figure 1 for illustrations in three dimensions (that is, m = 3).

These difficult cases cannot be handled with separable NMF, because it as-
sumes the data points to be linear combinations of vertices, so an “interior ver-
tex” cannot be distinguished from another data point. However, if we assume
the sparsity of the mixture matrix H, we may be able to identify these interior
vertices. To do so, we introduce a new model, extending the approach of SNPA
using additional sparsity constraints. We introduce in Section 2 a proper defi-
nition of this new problem, which we coin as sparse separable NMF (SSNMF).
Before doing so, let use recall the literature on sparse NMF.

1.4 Sparse NMF

A vector or matrix is said to be sparse when it has few non-zero entries. Sparse
NMF is one of the most popular variants of NMF, as it helps producing more
interpretable factors. In this model, we usually consider column-wise sparsity of
the factor H, meaning that a data point is expressed as the combination of only
a few atoms. For example, in multispectral unmixing, the column-wise sparsity
of H means that a pixel is composed of fewer materials than the total number
of materials present in the image. When sparsity is an a priori knowledge on the
structure of the data, encouraging sparsity while computing NMF is likely to
reduce noise and produce better results.
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Sparse NMF is usually solved by extending standard NMF algorithms with
a regularization such as the `1 penalty [9,11], or constraints on some sparsity
measure, like the one introduced in [10]. Recently, exact k-sparse methods based
on the `0-“norm” have been used for NMF, using a brute-force approach [4], or a
dedicated branch-and-bound algorithm [16]. They allow the explicit definition of
a maximum number (usually noted k) of non-zero entries per column ofH. These
approaches leverage the fact that, in most NMF problems, the factorization rank
r is small, hence it is reasonable to solve the k-sparse NNLS subproblems exactly.

1.5 Contributions and Outline

In this work, we study the SSNMF model from a theoretical and a pratical point
of view. Our contributions can be summarized as follows:

– In Section 2, we introduce the SSNMF model. We prove that, unlike sepa-
rable NMF, SSNMF is NP-complete.

– In Section 3, we propose an algorithm to tackle SSNMF, based on SNPA
and an exact sparse NNLS solver.

– In Section 4, we prove that our algorithm is correct under reasonable as-
sumptions, in the noiseless case.

– In Section 5, experiments on both synthetic and real-world data sets illus-
trate the relevance and efficiency of our algorithm.

2 Sparse Separable NMF

We explained in the previous section why separable NMF does not allow for the
identification of “interior vertices”, as they are nonnegative linear combinations
of other vertices. However, if we assume a certain column-wise sparsity on the
coefficient matrix H, they may become identifiable. For instance, the vertex W4

of Figure 1b can be expressed as a combination of the three exterior vertices (W1,
W2, and W3), but not as a combination of any two of these vertices. Moreover,
some data points cannot be explained using only pairs of exterior vertices, while
they can be if we also select the interior vertex W4.

2.1 Problem Statement and Complexity

Let us denote ‖x‖0 the number of non-zero entries of the vector x.

Definition 2. A matrix M is k-sparse r-separable if there exists a subset of r
columns of M , indexed by J , and a nonnegative matrix H ≥ 0 with ‖H(:, j)‖0 ≤
k for all j such that M = M(:,J )H.

Definition 2 corresponds to Definition 1 with the additional constraint that H
has k-sparse columns, that is, columns with at most k non-zero entries. A natural
assumption to ensure that we can identify W (that is, find the set J ), is that
the columns of W are not k-sparse combinations of any other columns of W ; see
Section 4 for the details.
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Problem 2 (SSNMF). Given a k-sparse r-separable matrixM , findW = M(:,J )
with |J | = r and a column-wise k-sparse matrix H ≥ 0 such that M = WH.

As opposed to separable NMF, given J , computing H is not straightforward.
It requires to solve the following `0-constrained optimization problem

H∗ = argmin
H≥0

f(M −M(:,J )H) such that ‖H(:, j)‖0 ≤ k for all j. (2)

Because of the combinatorial nature of the `0-“norm”, this k-sparse projection
is a difficult subproblem with

(
r
k

)
possible solutions, which is known to be NP-

hard [17]. In particular, a brute-force approach could tackle this problem by
solving O(rk) NNLS problems. However, this combinatorial subproblem can be
solved exactly and at a reasonable cost by dedicated branch-and-bound algo-
rithms, such as arborescent [16], given that r is sufficiently small, which is
typically the case in practice. Even when k is fixed, the following result shows
that no provably correct algorithm exists for solving SSNMF in polynomial time
(unless P=NP):

Theorem 1. SSNMF is NP-complete for any fixed k ≥ 2.

Proof. The proof is given in Appendix A. Note that the case k = 1 is trivial
since each data point is a multiple of a column of W .

However, in Section 4, we show that under a reasonable assumption, SSNMF
can be solved in polynomial time when k is fixed.

2.2 Related Work

To the best of our knowledge, the only work presenting an approach to tackle
SSNMF is the one by Sun and Xin (2011) [18] — and it does so only partially. It
studies the blind source separation of nonnegative data in the underdetermined
case. The problem tackled is equivalent to NMF in the case m < r. The assump-
tions used in this work are similar to ours, that is, separability and sparsity.
However, the setup considered is less general than SSNMF because the sparsity
assumption (on each column of H) is limited to k = m− 1, while the only case
considered theoretically is the case r = m+ 1 with only one interior vertex.

The proposed algorithm first extracts the exterior vertices using the method
LP-BSS from [15], and then identifies the interior vertex using a brute-force geo-
metric method. More precisely, they select an interior point, and check whether
at least two of the m − 1 hyperplanes generated by this vertex with m − 2 of
the extracted exterior vertices contain other data points. If it is the case, then
they conclude that the selected point is an interior vertex, otherwise they se-
lect another interior point. For example, when m = 3, this method consists in
constructing the segments between the selected interior point and all the exte-
rior vertices. If two of these segments contain at least one data point, then the
method stops and the selected interior point is chosen as the interior vertex.
Looking at Figure 1b, the only interior point for which two segments joining
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Algorithm 2: brassens
Input: A k-sparse-near-separable matrix M ∈ Rm×n, and the desired sparsity

level k.
Output: A set of r indices J , and a matrix H ∈ Rr×n+ , such that

‖H(:, j)‖0 ≤ k for all j and M = M̃(:,J )H.

1 J = SNPA(M,∞)
2 J ′ = kSSNPA(M,∞,J )
3 foreach j ∈ J ′ do
4 if min

||h||0≤k,h≥0
f(M(:, j)−M(:,J ′ \ j)h) > 0 then

5 J = J ∪ {j}

6 H = arborescent(M,M(:,J ), k)

this point and an exterior vertex contain data points is W4. Note that, to be
guaranteed to work, this method requires at least two hyperplanes containing
the interior vertex and m− 2 exterior vertices to contain data points. This will
not be a requirement in our method.

3 Proposed Algorithm: brassens

In the following, we assume that the input matrix M is k-sparse r-separable.
Our algorithm, called brassens3, is presented formally in Algorithm 2.

On Line 1 we apply the original SNPA to select the exterior vertices; it is
computationally cheap and ensures that these vertices are properly identified.
The symbol ∞ means that SNPA stops only when the residual error is zero.
For the noisy case, we replace the condition R 6= 0 by R > δ, where δ is a
user-provided noise-tolerance threshold.

Then, we adapt SNPA to impose a k-sparsity constraint on H: the projec-
tion step (Line 8 of Algorithm 1) is replaced by a k-sparse projection step that
imposes the columns of H to be k-sparse by solving (2). We call kSSNPA this
modified version of SNPA. Note that, if k = r, kSSNPA reduces to SNPA.

On Line 2 we apply kSSNPA to select candidate interior vertices. We pro-
vide it with the set J of exterior vertices so that they do not need to be identi-
fied again. kSSNPA extracts columns of M as long as the norm of the residual
‖M −M(:,J ′)H‖F is larger than zero. At this point, all vertices have been
identified: the exterior vertices have been identified by SNPA, while the interior
vertices have been identified by kSSNPA because we will assume that they are
not k-sparse combinations of any other data points; see Section 4 for the details.
Hence, the error will be equal to zero if and only if all vertices have been identi-
fied. However, some selected interior points may not be interior vertices, because
the selection step of kSSNPA chooses the point that is furthest away from the
3 It stands for brassens Relies on Assumptions of Separability and Sparsity for Ele-
gant NMF Solving.
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k-sparse hull of the selected points, that is, the union of the convex hulls of
the subsets of k already selected points. For example, in Figure 1b, if W1, W2,
and W3 are selected, the k-sparse hull is composed of the 3 segments [W1,W2],
[W2,W3], and [W3,W1]. In this case, although only pointW4 is a interior vertex,
point M1 is selected before point W4, because it is located further away from
the k-sparse hull.

On Lines 3 to 5, we apply a postprocessing to the selected points by checking
whether they are k-sparse combinations of other selected points; this is a k-sparse
NNLS problem solved with arborescent [16]. If they are, then they cannot be
vertices and they are discarded, such as point M1 in Figure 1b which belongs to
the segment [W1,W4].

Note that this “postprocessing” could be applied directly to the whole data
set by selecting data points as the columns of W if they are not k-sparse com-
binations of other data points. However, this is not reasonable in practice, as
it is equivalent to solving n times a k-sparse NNLS subproblem in n − 1 vari-
ables. The kSSNPA step can thus be interpreted as a safe screening technique,
similarly as done in [5] for example, in order to reduce the number of candidate
atoms from all the columns ofM to a subset J ′ of columns. In practice, we have
observed that kSSNPA is very effective at identifying good candidates points;
see Section 5.1.

4 Analysis of brassens

In this section, we first discuss the assumptions that guarantee brassens to
recover W given the k-sparse r-separable matrix M , and then discuss the com-
putational complexity of brassens.

4.1 Correctness

In this section, we show that, given a k-sparse r-separable matrix M , the bras-
sens algorithm provably solves SSNMF, that is, it is able to recover the correct
set of indices J such that W = M(:,J ), under a reasonable assumption.

Clearly, a necessary assumption for brassens to be able to solve SSNMF
is that no column of W is a k-sparse nonnegative linear combinations of other
columns of W , otherwise kSSNPA might set that column of W to zero, hence
might not be able to extract it.

Assumption 1. No column ofW is a nonnegative linear combination of k other
columns of W .

Interestingly, unlike the standard separable case (that is, k = r), and al-
though it is necessary in our approach with brassens, Assumption 1 is not
necessary in general to be able to uniquely recover W . Take for example the
situation of Figure 2, with three aligned points in the interior of a triangle, so
that r = 6, m = 3 and k = 2. The middle point of these three aligned points is a
2-sparse combination of the other two, by construction. If there are data points
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W6W4 W5

Fig. 2. There are three interior vertices.
One of them (W5) is a combination of the
others two.

W4

M1M2

Fig. 3. There are two interior vertices.
One of them (W4) is a 2-sparse combina-
tion of data points (M1 and M2).

on each segment joining these three interior points and the exterior vertices,
the only solution to SSNMF with r = 6 is the one selecting these three aligned
points. However, Assumption 1 is a reasonable assumption for SSNMF.

Unfortunately, Assumption 1 is not sufficient for brassens to provably re-
cover W . In fact, we need the following stronger assumption.

Assumption 2. No column ofW is a nonnegative linear combination of k other
columns of M .

This assumption guarantees that a situation such as the one shown on Figure 3
where one of the columns of W is a 2-sparse combination of two data points is
not possible. In fact, in that case, if brassens picks these two data points before
the interior vertex W4 in between them, it will not be able to identify W4 as it
is set to zero within the projection step of kSSNPA.

Interestingly, in the standard separable case, that is, k = r, the two assump-
tions above coincide; this is the condition under which SNPA is guaranteed to
work. Although Assumption 2 may appear much stronger than Assumption 1,
they are actually generically equivalent given that the entries of the columns
of H are generated randomly (that is, non-zero entries are picked at random
and follow some continuous distribution). For instance, for m = 3 and k = 2, it
means that no vertex is on a segment joining two data points. If the data points
are generated randomly on the segments generated by any two columns of W ,
the probability for the segment defined by two such data points to contain a
column of W is zero. In fact, segments define a set of measure zero in the unit
simplex.

We can now provide a recovery result for brassens.

Theorem 2. Let M = WH with W = M(:,J ) be a k-sparse r-separable matrix
so that |J | = r; see Definition 2. We have that

– If W satisfies Assumption 2, then the factor W with r columns in SSNMF
is unique (up to permutation and scaling) and brassens recovers it.

– If W satisfies Assumption 1, the entries of H are generated at random (more
precisely, the position of the non-zero entries are picked at random, while
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their values follows a continuous ditribution) and k < rank(M), then, with
probability one, the factor W with r columns in SSNMF is unique (up to
permutation and scaling) and brassens recovers it.

Proof. Uniqueness ofW in SSNMF under Assumption 2 is straightforward: since
the columns of W are not k-sparse combinations of other columns of M , they
have to be selected in the index set J . Otherwise, since columns of W are
among the columns of M , it would not possible to reconstruct M exactly using
k-sparse combinations of M(:,J ). Then, since all other columns are k-sparse
combinations of the r columns of W (by assumption), no other columns needs
to be added to J which satisfies |J | = r.

Let us show that, under Assumption 2, brassens recovers the correct set of
indices J . kSSNPA can only stop when all columns of W have been identified.
In fact, kSSNPA stops when the reconstruction error is zero, while, under As-
sumption 2, this is possible only when all columns of W are selected (for the
same reason as above). Then, the postprocessing will be able to identify, among
all selected columns, the columns of W , because they will be the only ones that
are not k-sparse combinations of other selected columns.

The second part of the proof follows from standard probabilistic results:
since k < rank(M), the combination of k data points generates a subspace of
dimension smaller than that of col(M). Hence, generating data points at random
is equivalent to generating such subspaces at random. Since these subspaces
form a space of measure zero in col(M), the probability for these subspaces to
contain a column of W is zero, which implies that Assumption 2 is satisfied with
probability one.

4.2 Computational Cost

Let us derive an upper bound on the computational cost of brassens. First,
recall that solving an NNLS problem up to any precision can be done in poly-
nomial time. For simplicity and because we focus on the non-polynomial part of
brassens, we denote Ō(1) the complexity of solving an NNLS problem. In the
worst case, kSSNPA will extract all columns of M . In each of the n iterations of
kSSNPA, the problem (2) needs to be solved. When |J | = O(n), this requires
to solve n times (one for each column of M) a k-sparse least squares problem in
|J | = O(n) variables. The latter requires in the worst case O(nk) operations by
trying all possible index sets; see the discussion after (2). In total, kSSNPA will
therefore run in the worst case in time Ō(nk+2).

Therefore, when k is fixed (meaning that k is considered as a fixed constant)
and under Assumption 2, brassens can solve SSNMF in polynomial time. Note
that this is not in contradiction with our NP-completeness results when k is fixed
(Theorem 1) because our NP-completeness proof does not rely on Assumption 2.

In summary, to make SSNMF hard, we need either k to be part of the input,
or the columns of W to be themselves k-sparse combinations of other columns
of W .
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5 Experiments

The code and data are available online4. All experiments have been performed
on a personal computer with an i5 processor, with a clock frequency of 2.30GHz.
All algorithms are single-threaded. All are implemented in Matlab, except the
sparse NNLS solver arborescent, which is implemented in C++ with a Matlab
MEX interface.

As far as we know, no algorithm other than brassens can tackle SSNMF
with more than one interior point (see Section 2.2) hence comparisons with ex-
isting works are unfortunately limited. For example, separable NMF algorithms
can only identify the exterior vertices; see Section 1. However, we will compare
brassens to SNPA on a real multispectral image in Section 5.2, to show the ad-
vantages of the SSNMF model over separable NMF. In Section 5.1, we illustrate
the correctness and efficiency of brassens on synthetic data sets.

5.1 Synthetic Data Sets

In this section, we illustrate the behaviour of brassens in different experimental
setups. The generation of a synthetic data set is done as follows: for a given
number of dimensions m, number of vertices r, number of data points n, and
data sparsity k, we generate matricesW ∈ Rm×r

+ such that the last r−m columns
of W are linear combinations of the first m columns, and H ∈ Rr×n

+ such that
H = [Ir, H

′] and ‖H(:, j)‖0 ≤ k for all j. We use the uniform distribution in the
interval [0,1] to generate random numbers (columns ofW and columns ofH), and
then normalize the columns ofW and H to have unit `1 norm. We then compute
M = WH. This way, the matrix M is k-sparse r-separable, with r vertices, of
which r −m are interior vertices (in fact, the first m columns of W are linearly
independent with probability one as they are generated randomly). We then run
brassens onM , with the parameter k, and no noise-tolerance. For a given setup,
we perform 30 rounds of generation and solving, and we measure the median of
the running time and the median of the number of candidates extracted by
kSSNPA. This number of candidates corresponds to |J ′| in Algorithm 2, that is,
the number of interior points selected by kSSNPA as potential interior vertices.
Note that a larger number of candidates only results in an increased computation
time, and does not change the output of the algorithm which is guaranteed to
extract all vertices (Theorem 2).

Figure 4 shows the behaviour of brassens when n varies, with fixed m = 3,
k = 2, and r = 5. To the best of our knowledge, this case is not handled by
any other algorithm in the literature. Both the number of candidates and the
run time grow slower than linear. The irregularities in the plot are due to the
high variance between runs. Indeed, if vertices are generated in a way that some
segments between vertices are very close to each other, brassens typically selects
more candidates before identifying all columns of W .

4 https://gitlab.com/nnadisic/ssnmf

https://gitlab.com/nnadisic/ssnmf
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Fig. 4. Results for brassens on synthetic data sets for different values of n, with fixed
m = 3, k = 2, and r = 5 with 3 exterior and 2 interior vertices. The values showed are
the medians over 30 experiments.

In Table 1 we compare the performance of brassens for several sets of pa-
rameters. The number of candidates grows relatively slowly as the dimensions
(m,n) of the problem increase, showing the efficiency of the screening performed
by kSSNPA. However, the run time grows rather fast when the dimensions (m,n)
grow. This is because, not only the number of NNLS subproblems to solve in-
crease, but also their size. In all cases, as guaranteed by Theorem 2, brassens

Table 1. Results for brassens on synthetic data sets (median over 30 experiments).

m n r k Number of candidates Run time in seconds
3 25 5 2 5.5 0.26
4 30 6 3 8.5 3.30
5 35 7 4 9.5 38.71
6 40 8 5 13 395.88

was able to correctly identify the columns of W . Again, as far as we know, no
existing algorithms in the literature can perform this task.

To summarize, our synthetic experiments show the efficiency of the screening
done by kSSNPA, and the capacity of brassens to handle medium-scale data
sets.
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5.2 Blind Multispectral Unmixing

A multispectral image is an image composed of various wavelength ranges, called
spectral bands, where every pixel is described by its spectral signature. This sig-
nature is a vector representing the amount of energy measured for this pixel
in every considered spectral band. Multispectral images usually have a small
number of bands (between 3 and 15). These bands can be included or not in
the spectrum of visible light. In the NMF model, if the columns of M are the n
pixels of the image, then its rows represent the m spectral bands.

The unmixing of a multispectral image consists in identifying the different
materials present in that image. When the spectral signatures of the materials
present in the image are unknown, it is referred to as blind unmixing. The use
of NMF for blind unmixing of multispectral images relies on the linear mixing
model, that is, the assumption that the spectral signature of a pixel is the lin-
ear combination of the spectral signatures of the material present in this pixel.
This corresponds exactly to the NMF model, which is therefore able to identify
both the materials present in the image (W ) and the proportions/abundances
of materials present in every pixel (H); see [3,14] for more details.

Let us apply brassens to the unmixing of the well-known Urban satellite
image [21], composed of 309 × 309 pixels. The original cleaned image has 162
bands, but we only keep 3 bands, namely the bands 2, 80, and 133 – these were
obtained by selecting different bands with SPA applied onMT – to obtain a data
set of size 3×94 249. The question is: can we still recover materials by using only
3 bands? (The reason for this choice is that this data set is well known and the
ground truth is available, which is not the case of most multispectral images with
only 3 bands.) We first normalize all columns ofM so that they sum to one. Then,
we run brassens with a sparsity constraint k = 2 (this means that we assume
that a pixel can be composed of at most 2 materials, which is reasonable for
this relatively high resolution image) and a noise-tolerance threshold of 4%; this
means that we stop SNPA and kSSNPA when ‖M −M(:,J )H‖F ≤ 0.04‖M‖F .
brassens extracts 5 columns of the input matrix. For comparison, we run SNPA
with r = 5. Note that this setup corresponds to underdetermined blind unmixing,
because m = 3 < r = 5. It would not be possible to tackle this problem using
standard NMF algorithms (that would return a trivial solution such as M =
I3M). It can be solved with SNPA, but SNPA cannot identify interior vertices.

SNPA extracts the 5 vertices in 3.8 seconds. brassens extracts 5 vertices,
including one interior vertex, in 33 seconds. The resulting abundance maps are
showed in Figure 5. They correspond to the reshaped rows of H, hence they show
which pixel contains which extracted material (they are more easily interpretable
than the spectral signatures contained in the columns ofW ). The materials they
contain are given in Table 2, using the ground truth from [20]. We see that
brassens produces a better solution, as the materials present in the image are
better separated: the first three abundance maps of brassens are sparser and
correspond to well-defined materials. The last two abundances maps of SNPA
and of brassens are similar but extracted in a different order. The running time
of brassens is reasonable, although ten times higher than SNPA.
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Fig. 5. Abundances maps of materials (that is, reshaped rows ofH) extracted by SNPA
(top) and by brassens (bottom) in the Urban image with only 3 spectral bands.

Table 2. Interpretation of the unimixing results from Figure 5.

Image Materials extracted by SNPA Materials extracted by brassens
1 Grass + trees + roof tops Grass + trees
2 Roof tops 1 Roof tops 1
3 Dirt + road + roof tops Road
4 Dirt + grass Roof tops 1 and 2 + road
5 Roof tops 1 + dirt + road Dirt + grass

6 Conclusion

In this paper, we introduced SSNMF, a new variant of the NMF model com-
bining the assumptions of separability and sparsity. We presented brassens, an
algorithm able to solve exactly SSNMF, based on SNPA and an exact sparse
NNLS solver. We showed its efficiency for various setups and in the successful
unmixing of a multispectral image. The present work provides a new way to
perform underdetermined blind source separation, under mild hypothesis, and
a new way to regularize NMF. It makes NMF identifiable even when atoms of
W are nonnegative linear combinations of other atoms (as long as these com-
binations have sufficiently many non-zero coefficients). Further work includes
the theoretical analysis of the proposed model and algorithm in the presence of
noise.
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A Proof of Theorem 1: NP-Completeness of SSNMF

The main purpose of this material is to provide the proof of Theorem 1. More
precisely, we prove the NP-completeness of SSNMF with k = 2, which we denote
2-SSNMF. The decision version of this problem is formally defined as follows.

Problem 3. 2-SSNMF
Given: a natural number r > 0 and a 2-sparse r-separable matrix M
Question: find a dictionary matrixW = M(:,J ) with |J | ≤ r and a column-wise
2-sparse matrix H ≥ 0 such that M = WH.

NP-completeness of SSNMF for any 2 ≤ k ≤ r follows directly as it would al-
low to solve 2-SSNMF by simply adding artificial columns of W (for example
orthogonal to the ones used in the 2-sparse decomposition). In order to prove
the NP-hardness of 2-SSNMF, we first demonstrate a polynomial time reduc-
tion from the well known NP-complete problem SET-COVER (see Garey and
Johnson (2002)5) to 2-SSNMF.

Problem 4. SET-COVER
Given: A finite set S = {1, ..., n}, a collection C = {C1, ..., Cm} of subsets of S
and a positive integer K ≤ m.
Question: Does C ′ ⊆ C exist with |C ′| ≤ K such that every element of S belongs
to at least one member of C ′.

From an instance (S,C,K) of SET-COVER, let us construct an instance
(M, r) of 2-SSNMF in polynomial time.

– The natural number r > 0 is defined as

r =

m∑
i=1

|Ci|+ 2 +K.

– The matrix M is the concatenation of three matrices M1, M2, M3 such that
M = [M1,M2,M3].
• For each subset Ci of Problem 4 with i = 1, ...,m, we have the data point
M1(:, i) defined as follows:

M1(:, i) =
(
0 −hi

)T
with hi = i

m+1 . Hence, M1 is a 2-by-m matrix.
• For each element j = 1, ..., n of the ground set S, we have the data point
M2(:, j) defined as follows:

M2(:, j) =
(
bj b

2
j

)T
with bj = 1

m+1+aj and a = 1
n . These points belong to the curve y = x2.

M2 is a 2-by-n matrix.
5 Garey, M.R., Johnson, D.S.: Computers and intractability, vol. 29 (2002)
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• When the jth element of the ground set S is a member of the ith subset
Ci, we add a data point in M3 as follows:

M3(:, l) =
(

hi

bj

h2
i

b2j

)T
with hi and bj as previously defined. Moreover, we add two more columns
to M3 for the data points (0, 0) and (0,−1). Hence, M3 is a 2-by-(2 +∑m

i=1 |Ci|) matrix. Note that the intersection of the curve y = x2 with
the linear equation connecting (0,−hi) and (bj , b

2
j ) is precisely the point

(hi

bj
,
h2
i

b2j
). We show in Lemma 1 that all these points never overlap. It

implies that a straight line between the ith point of M1 and a point in
M3 is passing through the jth point ofM2 if and only if j is in the subset
Ci.

Lemma 1. All the columns of M3 are different.

Proof. Suppose it is not the case and that for (i, j) and (i′, j′) with i 6= i′ and
j 6= j′, we have hi

bj
= hi′

bj′
, which means that, after rearrangement

i

i′
=
m+ 1 + aj′

m+ 1 + aj
. (3)

For j, j′ = 1, ..., n, the right-hand side of (3) varies as follows:

1− a
(

n− 1

m+ 1 + an

)
≤ m+ 1 + aj

m+ 1 + aj′
≤ 1 + a

(
n− 1

m+ 1 + a

)
,

and when a = 1
n , we have a

(
n−1

m+1+an

)
< a

(
n−1

m+1+a

)
< 1

m+1 , which means that
the variation of the right-hand side around 1 is as follows

1− 1

m+ 1
<

m+ 1 + aj

m+ 1 + aj′
< 1 +

1

m+ 1
.

For i, i′ = 1, ...,m + 1, the closest value to 1 of i
i′ is m

m+1 , that is 1 − 1
m+1 .

Therefore, the choice of a = 1
n prevents the right-hand side of (3) to be equal to

its left-hand side. It results that all the values hi

bj
are different for i = 1, ...,m+1

and j = 1, ..., n.

Lemma 2. All the columns of M are situated inside the convex hull of the
columns of M3.

Proof. Except for (0,−1), the columns of M3 are located on the moment curve
y = x2. It results that these points are the vertices of a convex polygon, known
under the name of cyclic polytope. The intersection of the y-axis and the line
connecting any two points of the set {(x, y)|y = x2, x ≥ 1} is located strictly
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below the point (0,−1). Following the definitions of hi and bj , we have hi

bj
≥ 1

for any i = 1, ...,m and j = 1, ..., n, which means that even with the addition of
(0,−1), the points of M3 still form a convex polygon. It is then easy to check
that the points of M1 and M2 are inside the convex hull of M3.

Lemma 3. The 2-SSNMF instance is a yes-instance if and only if the SET-
COVER instance is a yes-instance.

Proof. The if part. Suppose we have an optimal cover C ′ ⊆ C of the SET-
COVER instance with |C ′| ≤ K. From this solution, we build a solution to the
2-SSNMF instance as follows:

– For the dictionary matrix W , we concatenate M3 and the columns of M1

corresponding to the subsets in C ′. By this way, the number of columns of
W is less or equal than r =

∑m
i=1 |Ci|+ 2 +K.

– With M3 being in the dictionary, it is easy to construct the columns of
H corresponding to [M1,M3] in M : it is trivial for M3 and, for M1, the
two nonnegative entries of a column of H are the two coefficients of the
convex combination of (0, 0), (0,−1). Moreover, since W also contains the
K columns of M1 corresponding to the cover C ′, every column coming from
M2 inM can be expressed as the convex combination of exactly two columns
of W (see the reduction above). By this way, we have H ≥ 0, a column-wise
2-sparse matrix, such that M = WH.

The only if part. Suppose that we have a solution (W,H) of the 2-SSNMF
instance such that M = WH, W having at most r columns and H ≥ 0 being
a column-wise 2-sparse matrix. From this factorization, we show how to extract
a cover C ′ made of at most K subsets. All the columns of M3 are necessarily
in W since they are the vertices of a convex polygon (see Lemma 2). Since, by
construction, no convex combination of two points in M3 can reach the n points
inM2, we must haveW = [M3,W

′]Π with the columns ofW ′ coming either from
M1 or fromM2. The number of columns ofW ′ is therefore r−(

∑m
i=1 |Ci|+ 2) =

K. It remains to show how to construct a solution to the SET-COVER instance
from W ′. For every point in M2, it is possible to find a point in M1 and a point
M3 such that the three points are lined up (it is always possible to find such
points since we suppose that every element of the ground set belongs to at least
one subset in the SET-COVER instance). It means that we can replace all the
columns coming from M2 in W ′ by columns of M1 without increasing the size
of W ′. In order to maintain the equality M = WH, it is easy to update the
matrix H accordingly while keeping it column-wise 2-sparse. Finally, with the
K columns of W ′ coming from M1, we have identified a cover C ′ composed of
K subsets for the SET-COVER instance.

Proof. Proof of Theorem 1. 2-SSNMF is in NP since we can check in polynomial
time that a given pair (W,H) is a solution of a 2-SSNMF instance. With the
reduction from the SET-COVER problem presented above and Lemma 3, we
can conclude that 2-SSNMF is NP-hard.
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Illustration of the reduction. From the SET-COVER instance: n = 5, m = 4,
K = 2, C1 = {2, 4}, C2 = {1, 2, 3}, C3 = {3, 4} and C4 = {4, 5}, the reduction
presented above leads to the following 2-SSNMF instance: r = 13 and M =
[M1,M2,M3] with

M1 =

(
0 0 0 0
−h1 −h2 −h3 −h4

)
,M2 =

(
b1 b2 b3 b4 b5
b21 b

2
2 b

2
3 b

2
4 b

2
5

)
,

and M3 =

(
h1

b2
h1

b4
h2

b1
h2

b2
h2

b3
h3

b3
h3

b4
h4

b4
h4

b5
0 0

h2
1

b22

h2
1

b24

h2
2

b21

h2
2

b22

h2
2

b23

h2
3

b23

h2
3

b24

h2
4

b24

h2
4

b25
0 −1

)
,

where hi = i
5 for i = 1, ...4 and bj = (5 + j

5 )−1 for j = 1, ...5 (see Figure 6).
A solution to the SET-COVER instance is C ′ = {C2, C4} and the corresponding
2-SSNMF solution is

W =

(
h1

b2
h1

b4
h2

b1
h2

b2
h2

b3
h3

b3
h3

b4
h4

b4
h4

b5
0 0 0 0

h2
1

b22

h2
1

b24

h2
2

b21

h2
2

b22

h2
2

b23

h2
3

b23

h2
3

b24

h2
4

b24

h2
4

b25
0 −1 −h2 −h4

)
, and

H =

H =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 β2,1 0 0 0 0
0 0 0 0 0 β2,2 0 0 0
0 0 0 0 0 0 β2,3 0 0
0 0 0 0 0 0 0 0 0 I11
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 β4,4 0
0 0 0 0 0 0 0 0 β4,5

1− α1 1− α2 1− α3 1− α4 0 0 0 0 0
α1 α2 α3 α4 0 0 0 0 0
0 0 0 0 1− β2,1 1− β2,2 1− β2,3 0 0 0 . . . 0
0 0 0 0 0 0 0 1− β4,4 1− β4,5 0 . . . 0



,

for which we have M = WH when αi = hi, βi,j =
b2j
hi
.
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