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Abstract. Matrix completion is a ubiquitous tool in machine learning
and data analysis. Most work in this area has focused on the number
of observations necessary to obtain an accurate low-rank approximation.
In practice, however, the cost of observations is an important limiting
factor, and experimentalists may have on hand multiple modes of ob-
servation with differing noise-vs-cost trade-offs. This paper considers
matrix completion subject to such constraints: a budget is imposed and
the experimentalist’s goal is to allocate this budget between two sam-
pling modalities in order to recover an accurate low-rank approximation.
Specifically, we consider that it is possible to obtain low noise, high cost
observations of individual entries or high noise, low cost observations of
entire columns. We introduce a regression-based completion algorithm for
this setting and experimentally verify the performance of our approach on
both synthetic and real data sets. When the budget is low, our algorithm
outperforms standard completion algorithms. When the budget is high,
our algorithm has comparable error to standard nuclear norm completion
algorithms and requires much less computational effort.

Keywords: Matrix Completion · Low-rank Approximation · Nuclear
Norm Minimization.

1 Introduction

Matrix completion (MC) is a powerful and widely used tool in machine learning,
finding applications in information retrieval, collaborative filtering, recommenda-
tion systems, and computer vision. The goal is to recover a matrix A ∈ Rm×n
from only a few, potentially noisy, observations y ∈ Rd, where d� mn.

In general, the MC problem is ill-posed, as many matrices may give rise to
the same set of observations. Typically the inversion problem is made feasible
by assuming that the matrix from which the observations were generated is in
fact low-rank, rank(A) = r � min{m,n}. In this case, the number of degrees of
freedom in the matrix is (n+m)r, so if the observations are sufficiently diverse,
then the inversion process is well-posed.

In the majority of the MC literature, the mapping from the matrix to its
observations, although random, is given to the user, and the aim is to design
algorithms that minimize the sample complexity under these observation models.
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Some works have considered modifications of this paradigm, where the user
designs the observation mapping themselves in order to minimize the number of
measurements needed [6,21,14].

Fig. 1: noisyCUR, a regression-based MC algorithm (CUR+), and two nuclear
norm MC algorithms applied to the budgeted MC problem on a synthetic
incoherent matrix A ∈ R80×60. See Section 4 for more details on the experimental
setup. The performance of each method at each budget level is averaged over
10 runs, with hyper-parameters selected at each value of d by cross-validation.
Within the red region the budget is small enough that not enough entries can be
sampled for nuclear norm methods to have theoretical support. In this regime,
noisyCUR significantly outperforms the baseline algorithms.

This paper considers a budgeted variation of noisy matrix completion with
competing observation models: the goal is to allocate a finite budget between the
observation models to maximize the accuracy of the recovery. This setup is natural
in the context of experimental design: where, given competing options, the natural
goal of an experimenter is to spend their budget in a way that maximizes the
accuracy of their imputations. Specifically, this work considers a two-cost model
where either entire columns can be observed with high per-entry error but low
amortized per-entry cost, or entries can be observed with low per-entry error but
high per-entry cost. This is a natural model in, for instance, recommender systems
applications, where one has a finite budget to allocate between incentivizing
users to rate either entire categories of products or individual items. The former
corresponds to inexpensive, high-noise measurements of entire columns and the
latter corresponds to expensive, low-noise measurements of individual entries.
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The noisyCUR algorithm is introduced for this two-cost budgeted MC prob-
lem, and guarantees are given on its recovery accuracy. Figure 1 is illustrative of
the usefulness of noisyCUR in this setting, compared to standard nuclear norm
MC approaches and another regression-based MC algorithm. Even in low-budget
settings where nuclear norm matrix completion is not theoretically justifiable,
noisyCUR satisfies relative-error approximation guarantees. Empirical compar-
isons of the performance of noisyCUR to that of nuclear norm MC approaches
on a synthetic dataset and on the Jester and MovieLens data sets confirm that
noisyCUR can have significantly lower recovery error than standard nuclear
norm approaches in the budgeted setting. Additionally, noisyCUR tolerates the
presence of coherence in the row-space of the matrix, and is fast as its core
computational primitive is ridge regression.

The rest of the paper is organized as follows. In Section 2 we introduce the
two-cost model and discuss related works. Section 3 introduces the noisyCUR
algorithm and provides performance guarantees; most proofs are deferred to the
supplement. Section 4 provides an empirical comparison of the performance of
noisyCUR and baseline nuclear norm completion algorithms that demonstrates
the superior performance of noisyCUR in the limited budget setting. Section 5
concludes the work.

2 Problem Statement

2.1 Notation.

Throughout this paper, scalars are denoted by lowercase letters (n), vectors by
bolded lowercase letters (x), and matrices by bolded uppercase letters A. The
spectral, Frobenius, and nuclear norms of A ∈ Rm×n are written ‖A‖2, ‖A‖F ,
and ‖A‖? respectively, and its singular values are ordered in a decreasing fashion:
σ1(A) ≥ · · · ≥ σmin{m,n}(A). The smallest nonzero singular value of A is denoted
by σmin(A). The condition number of A is taken to be the ratio of the largest
singular value and the smallest nonzero singular value, κ2(A) = σ1(A)/σmin(A).
The orthogonal projection onto the column span of A is denoted by PA. Semi-
definite inequalities between the positive-semidefinite matrices A and B are
written, e.g., as A � B. The standard Euclidean basis vectors are written as e1,
e2, and so on.

2.2 Problem formulation

Given a limited budget B with which we can pay to noisily observe a matrix
A ∈ Rm×n, our goal is to construct a low-rank matrix A that approximates A
well. There are two modes of observation: very noisy and cheap samples of entire
columns of A, or much less noisy but expensive samples of individual entries of
A.

The following parameters quantify this two-cost observation model:

– Each low-noise sample of an individual entry costs pe.
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Algorithm 1 noisyCUR algorithm for completion of a low-rank matrix A ∈
Rm×n
Require: d, the number of column samples; s, the number of row samples; σe, the

noise level of the column samples; σc, the noise level of the row samples; and λ, the
regularization parameter

Ensure: A, approximation to A
1: C̃ ← C + Ec, where the d columns of C are sampled uniformly at random with

replacement from A, and the entries of Ec are i.i.d. N (0, σ2
c ).

2: U ← an orthonormal basis for the column span of C̃
3: `i ← 1

2
‖eT

i U‖22/‖U‖2F + 1
2m

for i = 1, . . . ,m
4: S ← SamplingMatrix(`,m, s), the sketching matrix1 used to sample s rows of A
5: Y = STA + Ee, where the entries of Ee are i.i.d. N (0, σ2

e).
6: X ← arg minZ ‖Y − ST C̃Z‖2F + λ‖Z‖2F
7: A← C̃X
8: return A

– Each high-noise sample of a column costs pc > 0. Because columns are cheap
to sample, pc < mpe.

– The low-noise samples are each observed with additive N (0, σ2
e) noise.

– Each entry of the high-noise column samples is observed with additiveN (0, σ2
c )

noise. Because sampling columns is noisier than sampling entries, σ2
c > σ2

e .

2.3 Related Work

To the best of the authors’ knowledge, there is no prior work on budgeted low-rank
MC. Standard approaches to matrix completion, e.g. [16,12,11] assume that the
entries of the matrix are sampled uniformly at random, with or without noise.
The most related works in the MC literature concern adaptive sampling models
that attempt to identify more informative observations to reduce the sample
complexity [6,14,21,13,3]. One of these works is [6], which estimates non-uniform
sampling probabilities for the entries in A and then samples according to these to
reduce the sample complexity. The work [14] similarly estimates the norms of the
columns of A and then samples entries according to these to reduce the sample
complexity. The work [21] proposes a regression-based algorithm for noiseless
matrix completion that uses randomly sampled columns, rows, and entries of the
matrix to form a low-rank approximation.

3 The noisyCUR algorithm

The noisyCUR (nCUR) algorithm, stated in Algorithm 1, is a regression-based
MC algorithm. The intuition behind noisyCUR is that, if the columns of A
were in general position and A were exactly rank-r, then one could recover A

1 SamplingMatrix(`,m, s) returns a matrix S ∈ Rm×s such that STA samples and
rescales, i.i.d. with replacement, s rows of A with probability proportional to their
shrinked leverage scores. See the supplement for details.
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by sampling exactly r columns of A and sampling r entries from each of the
remaining columns, then using regression to infer the unobserved entries of the
partially observed columns.

noisyCUR accomodates the presence of noise in the column and entry obser-
vations, and the fact that A is not low-rank. It samples d noisy columns from
the low-rank matrix A ∈ Rm×n, with entry-wise error that has variance σ2

c and
collects these columns in the matrix C̃ ∈ Rm×d. It then uses C̃ to approximate
the span of A and returns an approximation of the form A = C̃X.

The optimal coefficient matrix X would require A to be fully observed. The
sample complexity is reduced by instead sampling s rows noisily from A, with
entry-wise error that has variance σ2

e , to form the matrix Y . These rows are then
used to estimate the coefficient matrix X by solving a ridge-regression problem;
ridge regression is used instead of least-squares regression because in practice it
better mitigates the noisiness of the observations. The rows are sampled according
to the shrinked leverage scores [15,18] of the rows of C̃.

The cost of observing the entries of A needed to form the approximation A
is dpc + snpe, so the number of column observations d and the number of row
observations s are selected to use the entire budget, B = dpc + snpe.

Our main theoretical result is that when A is column-incoherent, has low
condition number and is sufficiently dense, noisyCUR can exploit the two sampling
modalities to achieve additive error guarantees in budget regimes where the
relative error guarantees of nuclear norm completion do not apply.

First we recall the definition of column-incoherence.

Definition 1 If A ∈ Rm×n and V ∈ Rm×r is an orthonormal basis for the row
space of A, then the column leverage scores of A are given by

`i = ‖eTi V ‖22 for i = 1, . . . , n.

The column coherence of A is the maximum of the column leverage scores of A,
and A is said to have a β-incoherent column space if its column coherence is
smaller than β rn .

Theorem 1 Let A ∈ Rm×n be a rank-r matrix with β-incoherent column space.
Assume that A is dense: there is a c > 0 such that at least half 2 of the entries
of A satisfy |aij | ≥ c.

Fix a precision parameter ε ∈ (0, 1) and invoke Algorithm 1 with

d ≥ max

{
6 + 2ε

3ε2
βr log

r

δ
,

8(1 + δ)2

c2(1− ε)ε
rκ2(A)2σ2

c

}
and s ≥ 6 + 2ε

3ε2
2d log

d

δ
.

The returned approximation satisfies

‖A−A‖2F ≤
(
γ + ε+ 40

ε

1− ε

)
‖A‖2F + 12ε

(
σ2
e

σ2
c

)
dσ2

r(A)

2 This fraction can be changed, with corresponding modification to the sample com-
plexities d and s.



6 D. Hu et al.

with probability at least 0.9− 2δ − 2 exp(−(m−r)δ
2

2 )− exp(−sn32 ). Here,

γ ≤ 2

(
1 + ε

1− ε

) λ

(1 + ε)
(

1
2

√
m− r −

√
d
)2
σ2
c + λ


2

.

The proof of this result is deferred.

Comparison of nuclear norm and noisyCUR approximation guaran-
tees. Theorem 1 implies that, if A has low condition number, is dense and column-
incoherent, and the regularization parameter λ is selected to be o((

√
m− r −√

d)2σc), then a mixed relative-additive bound of the form

‖A−A‖2F ≤ ε′‖A‖2F + ε′′Õ(r)σ2
r(A)

= ε′‖A‖2F + ε′′Õ(‖A‖2F ) (1)

holds with high probability for the approximation returned by Algorithm 1, where
ε′ and ε′′ are o(1), when d and s are Ω̃(r).

By way of comparison, the current best guarantees for noisy matrix completion
using nuclear norm formulations state that if d = Ω((n+m)r log(n+m)) entries
are noisily observed with noise level σ2

e , then a nuclear norm formulation of the
matrix completion problem yields an approximation A that satisfies

‖A−A‖2F = O

(
σ2
e

σ2
r(A)

nm

r

)
‖A‖2F

with high probability [7,2]. The conditions imposed to obtain this guarantee [7]
are that A has low condition number and that both its row and column spaces
are incoherent. If we additionally require that A is dense, so that the assumptions
applied to both algorithms are comparable, then ‖A‖2F = Ω(mn) and the
guarantee for nuclear norm completion becomes

‖A−A‖2F = O(σ2
eκ

2
2(A))‖A‖2F . (2)

Comparison of budget requirements for nuclear norm completion and
noisy CUR. For nuclear norm completion approaches to assure guarantees of
the form (2) it is necessary to obtain Ω((n+m)r log(n+m)) high precision noisy
samples [4], so the budget required is

BNN = Ω((n+m)r log(n+m)pe).

When BNN exceeds the budget B, there is no theory supporting the use of a mix
of more expensive high and cheaper low precision noisy measurements.

The noisyCUR algorithm allows exactly such a mix: the cost of obtaining the
necessary samples is

BnCUR = dpc + snpe = Ω̃(r)pc + Ω̃r(nr)pe,
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where the notation Ω̃r(·) is used to indicate that the omitted logarithmic factors
depend only on r. It is evident that

BnCUR < BNN ,

so the noisy CUR algorithm is applicable in budget regimes where nuclear norm
completion is not.

3.1 Proof of Theorem 1

Theorem 1 is a consequence of two structural results that are established in the
supplement.

The first result states that if rank(C) = rank(A) and the bottom singular
value of C is large compared to σc, then the span of C̃ will contain a good
approximation to A.

Lemma 1 Fix an orthonormal basis U ∈ Rm×r and consider A ∈ Rm×n and
C ∈ Rm×d with factorizations A = UM and C = UW , where both M and W
have full row rank. Further, let C̃ be a noisy observation of C, that is, let C̃ =
C +G where the entries of G are i.i.d. N (0, σ2

c ). If σmin(C) ≥ 2(1 + δ)σc
√
m/ε,

then
‖(I − PC̃)A‖2F ≤ ε‖A‖2F

with probability at least 1− exp
(
−mδ2

2

)
.

Recall the definition of a (1± ε)-subspace embedding.

Definition 2 (Subspace embedding [20]) Let A ∈ Rm×n and fix ε ∈ (0, 1).
A matrix S ∈ Rm×s is a (1± ε)-subspace embedding for A if

(1− ε)‖x‖22 ≤ ‖STx‖22 ≤ (1 + ε)‖x‖22

for all vectors x in the span of A, or equivalently, if

(1− ε)ATA � ATSSTA � (1 + ε)ATA.

Often we will use the shorthand “subspace embedding” for (1± ε)-subspace em-
bedding.

The second structural result is a novel bound on the error of sketching using
a subspace embedding to reduce the cost of ridge regression, when the target is
noisy.

Corollary 1 Let C̃ ∈ Rm×d, where d ≤ m, and Ã = A + E be matrices, and
let S be an (1± ε)-subspace embedding for C̃. If

X = arg minZ ‖ST (Ã− C̃Z)‖2F + λ‖Z‖2F ,
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then

‖A−C̃X‖2F ≤ ‖(I−PC̃)A‖2F+γ‖PC̃A‖2F+
4

1− ε
‖STE‖2F+

4

1− ε
‖ST (I−PC̃)A‖2F ,

where γ = 2
(

1+ε
1−ε

)(
λ

(1+ε)σd(C̃)2+λ

)2
.

Corollary 1 differs significantly from prior results on the error in sketched
ridge regression, e.g. [1,18], in that: (1) it bounds the reconstruction error rather
than the ridge regression objective, and (2) it considers the impact of noise in the
target. This result follows from a more general result on sketched noisy proximally
regularized least squares problems, stated as Theorem ?? in the supplement.

Together with standard properties of Gaussian noise and subspace embeddings,
these two results deliver Theorem 1.

Proof (Proof of Theorem 1). The noisyCUR algorithm first forms the noisy
column samples C̃ = C + Ec, where C = AM . The random matrix M ∈ Rn×d
selects d columns uniformly at random with replacement from the columns of
A, and the entries of Ec ∈ Rm×d are i.i.d. N (0, σ2

c ). It then solves the sketched
regression problem

X = arg minZ ‖ST (Ã− C̃Z)‖2F + λ‖Z‖2F ,

and returns the approximation A = C̃X. Here Ã = A + Ee, where Ee ∈ Rm×n
comprises i.i.d N (0, σ2

e) entries, and the sketching matrix S ∈ Rm×s samples s
rows using the shrinked leverage scores of C̃.

By [18, Appendix A.1.1], S is a subspace embedding for C̃ with failure
probability at most δ when s is as specified. Thus Corollary 1 applies and gives
that

‖A− C̃X‖2F ≤ ‖(I − PC̃)A‖2F + γ′‖PC̃A‖2F

+
4

1− ε
‖STE‖2F +

4

1− ε
‖ST (I − PC̃)A‖2F

= T1 + T2 + T3 + T4,

where γ′ = 2
(

1+ε
1−ε

)(
λ

(1+ε)σd(C̃)2+λ

)2
. We now bound the four terms T1, T2, T3,

and T4.
To bound T1, note that by [19, Lemma 13], the matrix

√
n
dM is a subspace

embedding for AT with failure probability at most δ when d is as specified. This
gives the semidefinite inequality n

dCCT = n
dAMMTAT � (1− ε)AAT , which

in turn gives that

σ2
r(C) ≥ (1− ε) d

n
σ2
r(A) ≥ 8(1 + δ)2

c2ε

r

n
‖A‖22σ2

c

≥ 8(1 + δ)2

c2εn
‖A‖2Fσ2

c ≥ 4(1 + δ)2
m

ε
σ2
c .
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The second inequality holds because

d ≥ 8(1 + δ)2

c2(1− ε)ε
rκ2(A)2σ2

c implies σ2
r(A) ≥ 8(1 + δ)2

c2(1− ε)ε
r

d
‖A2‖2σ2

c (3)

The third inequality holds because r‖A‖22 is an overestimate of ‖AF ‖22. The final
inequality holds because the denseness of A implies that ‖A‖2F ≥ 1

2c
2mn.

Note also that the span of C = AM is contained in that of A, and since
n
dCCT � (1− ε)AAT , in fact C and A have the same rank and therefore span
the same space. Thus the necessary conditions to apply Lemma 1 are satisfied,
and as a result, we find that

T1 ≤ ε‖A‖2F
with failure probability at most exp(−mδ

2

2 ).
Next we bound T2. Observe that ‖PC̃A‖2F ≤ ‖A‖2F . Further, by Lemma ??

in the supplement,

σd(C̃) ≥
(

1

2

√
m− r −

√
d

)2

σ2
c

with failure probability at most exp(−(m−r)δ
2

2 ). This allows us to conclude that

T2 ≤ γ‖A‖2F ,

where γ is as specified in the statement of this theorem.
To bound T3, we write

T3 =
4

1− ε
‖STPSE‖2F ≤

4

1− ε
‖S‖22‖PSE‖2F

≤ 8

1− ε
m

s
‖QTE‖2F ,

where Q is an orthonormal basis for the span of S. The last inequality holds
because [18, Appendix A.1.2] shows that ‖S‖22 ≤ 2ms always. Finally, note that
Q has at most s columns, so in the worst case QTE comprises sn i.i.d. N (0, σ2

e)
entries. A standard concentration bound for χ2 random variables with sn degrees
of freedom [17, Example 2.11] guarantees that

‖QTE‖2F ≤
3

2
snσ2

e

with failure probability at most exp(−sn32 ). We conclude that, with the same
failure probability,

T3 ≤
12

1− ε
mnσ2

e .

Now recall (3), which implies that

ε(1− ε)dσ2
r(A) ≥ 8(1 + δ)2

c2
r‖A2‖2σ2

c ≥
8(1 + δ)2

c2
‖A‖2Fσ2

c

≥ 4(1 + δ)2mnσ2
c ≥ mnσ2

c .
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It follows from the last two displays that

T3 ≤ 12ε

(
σ2
e

σ2
c

)
dσ2

r(A).

The bound for T4 is an application of Markov’s inequality. In particular, it is
readily verifiable that E[SST ] = I, which implies that

ET4 =
4

1− ε
‖(I − PC̃)A‖2F =

4

1− ε
T1 ≤

4ε

1− ε
‖A‖2F .

The final inequality comes from the bound T1 ≤ ε‖A‖2F that was shown earlier.
Thus, by Markov’s inequality,

T4 ≤
40ε

1− ε
‖A‖2F

with failure probability at most 0.1.
Collating the bounds for T1 through T4 and their corresponding failure

probabilities gives the claimed result.

4 Empirical Evaluation

In this section we investigate the performance of the noisyCUR method on a
small-scale synthetic data set and on the Jester and MovieLens data sets. We
compare with the performance of three nuclear norm-based algorithms in a low
and a high-budget regime.

4.1 Experimental setup

Four parameters are manipulated to control the experiment setup:

1. The budget, taken to be of the size B = c0mrpe for some constant positive
integer c0. This choice ensures that the O((n+m)r log(n+m)) high precision
samples needed for nuclear norm completion methods cannot be obtained.

2. The ratio of the cost of sampling a column to that of individually sampling
each entry in that column, α = pc

mpe
. For all three experiments, we set α = 0.2.

3. The entry sampling noise level σ2
e .

4. The column sampling noise level σ2
c .

Based on the signal-to-noise ratio between the matrix and the noise level of the
noisiest observation model, σ2

c , we classify an experiment as being high noise or
low noise. The entry-wise signal-to-noise ratio is given by

SNR =
‖A‖2F
mnσ2

c

.

High SNR experiments are said to be low noise, while those with low SNR are
said to be high noise.



NoisyCUR: An algorithm for two-cost budgeted matrix completion 11

4.2 Methodology: noisyCUR and the baselines

We compare to three nuclear norm-based MC algorithms, as nuclear norm-based
approaches are the most widely used and theoretically investigated algorithms
for low-rank MC. We additionally compare to the CUR+ algorithm of [21] as it
is, similarly to noisyCUR, a regression-based MC algorithm.

To explain the baselines, we introduce some notation. Given a set of indices
Ω, the operator PΩ : Rm×n → Rm×n returns a matrix whose values are the same
as those of the input matrix on the indices in Ω, and zero on any indices not in
Ω. The set Ωs below comprises the indices of entries of A sampled with high
accuracy, while Ωc comprises the indices of entries of A sampled using the low
accuracy column observation model.

(nCUR) Given the settings of the two-cost model, the noisyCUR algorithm is
employed by selecting a value for d, the number of noisy column samples; the
remaining budget then determines s, the number of rows that are sampled with
high precision. Cross-validation is used to select the regularization parameter λ.

(CUR+) The CUR+ algorithm is designed for noiseless matrix completion [21];
it is adapted in a straightforward manner to our setting. Now d is the number
of noisy row and column samples, and d/2 columns and d/2 rows are sampled
uniformly with replacement from A and noisily observed to form column and row
matrices C and R. The remaining budget is used to sample entries to form Ωe
and Aobs, the partially observed matrix which contains the observed noisy entry
samples and is zero elsewhere. The CUR+ algorithm then returns the low-rank
approximation A = CUR, where U is obtained by solving

U = arg min ‖PΩe(Aobs −CUR)‖2F .

(NNa) The first of the nuclear norm baselines is the formulation introduced
in [5], which forms the approximation

A = arg minZ ‖Z‖?
s.t. ‖PΩe(Z −Aobs)‖F ≤ δ, (i, j) ∈ Ωe.

(4)

All of the budget is spend on sampling entries to form Ωe and Aobs, the partially
observed matrix which contains the observed noisy entry samples and is zero
elsewhere. Thus the performance of this model is a constant independent of d
in the figures. The hyperparameter δ is selected through cross-validation. This
baseline is referred to as NNa (nuclear norm minimization for all entries) in the
figures.

(NNs) The second nuclear norm baseline is a nuclear norm formulation that
penalizes the two forms of observations separately, forming the approximation

A = arg minZ ‖Z‖?
s.t. ‖PΩc

(Z −Aobs)‖2F ≤ C1dmσ
2
c

‖PΩe
(Z −Aobs)‖2F ≤ C2fσ

2
e

(5)
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where C1 and C2 are parameters, and again Aobs is the partially observed matrix
which contains the observed noisy column samples and entry samples and is zero
elsewhere. As with the noisyCUR method, given a value of d, the remaining
budget is spent on sampling s rows with high precision. The hyperparameters C1

and C2 are selected through cross-validation. This baseline is referred to as NNs
(nuclear norm split minimization) in the figures.

(Chen) The final nuclear norm baseline is an adaptation of the two-phase
sampling method of [6]. This method spends a portion of the budget to uniformly
at random sample entries to estimate leverage scores, then uses the rest of the
budget to sample entries according to the leverage score and reconstructs from
the union of these samples using the same optimization as NNa. The performance
is therefore independent of d. This baseline is referred to as Chen in the figures.

The details of cross-validation of the parameters for the nuclear norm methods
are omitted because there are many relevant hyperparameters: in addition to
the constraint parameters in the optimization formulations, there are important
hyperparameters associated with the ADMM solvers used (e.g., the Lagrangian
penalty parameters).

4.3 Synthetic Dataset

Figure 2 compares the performance of the baseline methods and noisyCUR on an
incoherent synthetic data set A ∈ R80×60 generated by sampling a matrix with
i.i.d. N (5, 1) entries and taking its best rank four approximation. For each value
of d, the regularization parameter λ of noisyCUR is selected via cross-validation
from 500 logarithmically spaced points in the interval (10−4, 10).

4.4 Jester

Figure 3 compares the performance of the baseline methods and noisyCUR on
a subset of the Jester dataset of [9]. Specifically the data set was constructed
by extracting the submatrix comprising the 7200 users who rated all 100 jokes.
For each value of d, the regularization parameter λ of noisyCUR is selected via
cross-validation from 200 points logarithmically spaced in the interval (10, 105).

4.5 Movielens-100K

Figure 4 compares the performance of the baseline methods and noisyCUR on
the Movielens-100K dataset of [10]. The original 1682× 943 data matrix is quite
sparse, so the iterative SVD algorithm of [8] is used to complete it to a low-rank
matrix before applying noisyCUR and the three baseline algorithms. For each
value of d, the parameter λ of noisyCUR is cross-validated among 200 points
linearly spaced in the interval [1, 200].
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Fig. 2: Performance on the synthetic dataset. β = 15% for all plots. The noise
level is low in the top plots: σ2

e = 0.01, σ2
c = 0.05. The upper left plot shows

all methods, while the upper right plot removes the NNs method to facilitate
comparison of the better performing methods. In the bottom two plots, the noise
level is higher: σ2

e = 0.04, σ2
c = 0.2. Similarly, the bottom left plot shows all

methods, while the bottom right removes the NNs method. Each point in the
plots is the average of 100 runs.

4.6 Observations

In both the lower and higher noise regimes on all the datasets, noisyCUR exhibits
superior performance when compared to the nuclear norm baselines, and in all
but one of the experiments, noisyCUR outperforms CUR+, the regression-based
baseline. Also, noisyCUR produces a v-shaped error curve, where the optimal
approximation error is achieved at the bottom of the v. This convex shape of the
performance of noisyCUR with respect to d suggests that there may be a single
optimal d given a dataset and the parameters of the two-cost model.

We note a practical consideration that arose in the empirical evaluations:
the noisyCUR method is much faster than the nuclear norm algorithms, as they
invoke an iterative solver (ADMM was used in these experiments) that computes
SVDs of large matrices during each iteration, while noisyCUR solves a single
ridge regression problem.
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Fig. 3: Performance on the Jester data set. β = 11% for all plots. The noise level
is low in the top plots: σ2

e = 0.04, σ2
c = 2. In the bottom two plots, the noise

level is higher: σ2
e = 0.25, σ2

c = 12.5. As in Figure 2, the plots to the left contain
the NNs baseline while those to the right do not. Each point in the plots is the
average over 10 runs.

Fig. 4: Performance on the MovieLens-100K data set. β = 10.6% for all plots. The
noise level is low in the upper two plots: σ2

e = 0.003, σ2
c = 0.06. In the bottom

two plots, the noise level is higher: σ2
e = 0.0225, σ2

c = 0.65. As in Figure 2, the
plots to the left show the NNs baseline while the plots to the right do not. Each
point in the plots is the average of 10 runs.
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5 Conclusion

This paper introduced the noisyCUR algorithm for solving a budgeted matrix
completion problem where the two observation modalities consist of high-accuracy
expensive entry sampling and low-accuracy inexpensive column sampling. Re-
covery guarantees were proven for noisyCUR; these hold even in low-budget
regimes where standard nuclear norm completion approaches have no recovery
guarantees. noisyCUR is fast, as the main computation involved is a ridge re-
gression. Empirically, it was shown that noisyCUR has lower reconstruction
error than standard nuclear norm completion baselines in the low-budget setting.
It is an interesting open problem to determine optimal or near-optimal values
for the number of column and row samples (d and s), given the parameters
of the two-cost model (B, pe, pc, σe, and σc). Implementations of noisyCUR
and the baseline methods used in the experimental evaluations are available at
https://github.com/jurohd/nCUR, along with code for replicating the experi-
ments.
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