Skip to main content

Gauss Shift: Density Attractor Clustering Faster Than Mean Shift

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12457))

Abstract

Mean shift is a popular and powerful clustering method. While techniques exist that improve its absolute runtime, no method has been able to effectively improve its quadratic time complexity with regard to dataset size. To enable development of an alternative, faster method that leads to the same results, we first contribute the formal cluster definition, which mean shift implicitly follows. Based on this definition we derive and contribute Gauss shift – a method that has linear time complexity. We quantify the characteristics of Gauss shift using synthetic datasets with known topologies. We further qualify Gauss shift using real-life data from active neuroscience research, which is the most comprehensive description of any subcellular organelle to date.

Supplementary material: www.daml.in.tum.de/gauss-shift.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Branch, M.A., Coleman, T.F., Li, Y.: A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 21(1), 1–23 (1999)

    Article  MathSciNet  Google Scholar 

  2. Campello, R.J.G.B., Moulavi, D., Sander, J.: Density-based clustering based on hierarchical density estimates. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 160–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_14

    Chapter  Google Scholar 

  3. Carreira-Perpiñán, M.Á.: Acceleration strategies for Gaussian mean-shift image segmentation. In: IEEE CVPR 2006, vol. 1, pp. 1160–1167 (2006)

    Google Scholar 

  4. Carreira-Perpiñán, M.Á.: A review of mean-shift algorithms for clustering (2015)

    Google Scholar 

  5. DeMenthon, D., Megret, R.: Spatio-temporal segmentation of video by hierarchical mean shift analysis. Center for Automation Research, University of Maryland, College Park (2002)

    Google Scholar 

  6. van der Ende, D., Thiery, J.M., Eisemann, E.: Accelerated mean shift for static and streaming environments. In: The 4th International Conference on Data Analytics (2015)

    Google Scholar 

  7. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: 2nd International Conference on Knowledge Discovery and Data Mining (KDD) (1996)

    Google Scholar 

  8. Gionis, A., et al.: Comparison of enhanced DBSCAN algorithms: a review. In: ICIATE, vol. 5 (2017)

    Google Scholar 

  9. Hartigan, J.A.: Clustering Algorithms. JWS, Hoboken (1975)

    MATH  Google Scholar 

  10. Hinneburg, A., Gabriel, H.-H.: DENCLUE 2.0: fast clustering based on kernel density estimation. In: R. Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 70–80. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74825-0_7

    Chapter  Google Scholar 

  11. Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databased with noise. In: Proceedings of the 4th KDD, pp. 58–65 (1998)

    Google Scholar 

  12. Khan, K., Rehman, S.U., Aziz, K., Fong, S., Sarasvady, S.: DBSCAN: past, present and future. In: 5th ICADIWT, pp. 232–238 (2014)

    Google Scholar 

  13. Kraft, D.: A software package for sequential quadratic programming. Technical report, DFVLR-FB 88–28, DLR German Aerospace Center - Institute for Flight Mechanics, Cologne, Germany (1988)

    Google Scholar 

  14. Lee, D., Moore, A.W., Gray, A.G.: Dual-tree fast Gauss transforms. In: NIPS vol. 18, pp. 747–754 (2006)

    Google Scholar 

  15. Leibrandt, R., Günnemann, S.: Making kernel density estimation robust towards missing values in highly incomplete multivariate data without imputation. In: Proceedings of the SIAM SDM 2018 (2018)

    Google Scholar 

  16. Leung, Y., et al.: Clustering by scale-space filtering. IEEE TPAMI 22(12), 1396–1410 (2000)

    Article  Google Scholar 

  17. Neal, R.M., Hinton, G.E.: A view of the EM algorithm that justifies incremental, sparse, and other variants. In: Jordan, M.I. (eds.) Learning in Graphical Models. NATO ASI Series (Series D: Behavioural and Social Sciences), vol. 89, pp. 355–368. Springer, Dordrecht (998). https://doi.org/10.1007/978-94-011-5014-9_12

  18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2000)

    Google Scholar 

  19. Richter, K., et al.: Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy. EMBO J. 37(1), 139–159 (2018)

    Article  Google Scholar 

  20. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344(6191), 1492–1496 (2014)

    Article  Google Scholar 

  21. Shapira, L., Avidan, S., Shamir, A.: Mode-detection via median-shift. In: IEEE 12th International Conference on Computer Vision, pp. 1909–1916 (2009)

    Google Scholar 

  22. Sheikh, Y.A., Khan, E.A., Kanade, T.: Mode-seeking by Medoidshifts. In: IEEE 11th International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  23. Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 705–718. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_52

    Chapter  Google Scholar 

  24. Virtanen, P., et al.: SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020)

    Article  Google Scholar 

  25. Voglis, C., Lagaris, I.E.: A rectangular trust region dogleg approach for unconstrained and bound constrained nonlinear optimization. In: 6th WSEAS AMATH (2004)

    Google Scholar 

  26. Wang, Y., Huang, X., Wu, L.: Clustering via geometric median shift over Riemannian manifolds. Inf. Sci. 220, 292–305 (2013)

    Article  MathSciNet  Google Scholar 

  27. Wilhelm, B., et al.: Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344(6187), 1023–1028 (2014)

    Article  Google Scholar 

  28. Yang, C., Duraiswami, R., Gumerov, N.A., Davis, L.: Improved fast Gauss transform and efficient kernel density estimation. In: IEEE 9th International Conference on Computer Vision, vol. 1, pp. 664–671 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Leibrandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leibrandt, R., Günnemann, S. (2021). Gauss Shift: Density Attractor Clustering Faster Than Mean Shift. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67658-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67657-5

  • Online ISBN: 978-3-030-67658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics