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Abstract. Option discovery and skill acquisition frameworks are integral
to the functioning of a hierarchically organized Reinforcement learning
agent. However, such techniques often yield a large number of options or
skills, which can be represented succinctly by filtering out any redundant
information. Such a reduction can decrease the required computation
while also improving the performance on a target task. To compress an
array of option policies, we attempt to find a policy basis that accurately
captures the set of all options. In this work, we propose Option Encoder, an
auto-encoder based framework with intelligently constrained weights, that
helps discover a collection of basis policies. The policy basis can be used as
a proxy for the original set of skills in a suitable hierarchically organized
framework. We demonstrate the efficacy of our method on a collection
of grid-worlds evaluating the obtained policy basis on downstream tasks
and demonstrate qualitative results on the Deepmind-lab task.

Keywords: Hierarchical Reinforcement Learning · Policy Distillation.

1 Introduction

Reinforcement learning (RL) [25] deals with solving sequential decision-making
tasks and primarily operates through a trial-and-error paradigm for learning. The
increased interest in Reinforcement learning can be attributed to the powerful
function approximators from Deep learning. Deep Reinforcement Learning (DRL)
has managed to achieve competitive performances on some challenging high-
dimensional domains [16,15,10,21]. To scale to larger problems or reduce the
training time drastically, one could attempt to structure the agent in a hierarchical
fashion. The agent hence makes decisions based on abstract state and action
spaces, which helps reduce the complexity of the problem. One popular realization
of hierarchies is the options framework [26] which formalizes the notion of a
temporally extended sequence of actions.

Discovery of options, particularly in a task agnostic manner often leads to a
large number of options. Option discovery methods [13,14,22,23,24] as a result,
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typically resort to heuristics that help prune this set. In such a scenario, a
compression algorithm is of utility, since it would be wasteful to discard these
options and ineffective to use all of them simultaneously. When using a large
number of options, the computation expended for determining the relevance
of each option policy is higher, when compared to using a smaller set of basis
policies [13]. In this work, we demonstrate that a reduced set of basis policies,
results in improved empirical performances, on a collection of target tasks.

Fig. 1. A visual depiction of the Option Encoder Framework. The blue colored layers
(on the encoder side) correspond to the original option policies, and the red layer
corresponds to the distilled policies. Any set of decoder weights connected to the same
output, sum to 1. The distilled policies are used in a hierarchical agent that attempts
to learn a policy for a downstream target task. For more details on the policy and the
base network in the hierarchical agent, see [19].

Resorting to an existing policy distillation or compression method [6,7,17] is
one possible alternative. However, these methods distill the options into a single
network, resulting in a single policy that captures the behavior of all policies.
The diversity among the different option policies may be captured efficiently only
if they are distilled to more than one policy. To address the same, we propose
the Option Encoder, a framework that attempts to find a suitable collection
of basis policies, from the discovered set of options. We use an auto-encoder
based model where an intermediate hidden layer is interpreted as a set of basis
policies which we term as distilled policies. The distilled policies are forced to
reconstruct the original set of options using attention weights. The intermediate
hidden layers would hence be forced to capture the commonalities between the
various options and potentially eliminate redundancies. The overview of this
framework is summarized in Figure 1. The obtained distilled policies can be used
to solve a new set of tasks and can be used as a proxy for the original set of
options in a new algorithm.

Our work also provides a simple mechanism to combine options obtained
from different option discovery techniques. This is similar in spirit to [3] but
we do not combine the options in a goal-directed manner. Generating options
for a certain goal is useful in some scenarios but is difficult to work with in a
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multi-task setting. Using a task-agnostic approach (like in the Option Encoder)
allows the options to be reusable across different tasks. Furthermore, the Option
Encoder discards the full set of expert options after distilling to a smaller set,
which is not the case in [3].

Our contributions in this work are as follows: 1) We describe the Option
Encoder framework, which finds a ‘basis” for a set of options by compressing
them into a smaller set. 2) We present qualitative experiments, analyses and
ablation experiments to justify the efficacy of our framework 3) We empirically
demonstrate that the Option Encoder helps improve or retain the performance
on downstream tasks when compared to using the raw set of options or when
using a reduced number of options.

The experiments are conducted on a few challenging grid-worlds where we
achieve a 5-fold or 10-fold reduction in the number of options while retaining or
even improving the performance. We also show results in the high-dimensional
visual navigation domain of Deepmind-lab.

2 Preliminaries

RL deals with sequential decision making problems and models the interaction
of an agent with an environment. This interaction is traditionally modeled by
a Markov Decision Process (MDP) [18], defined by the tuple 〈S,A, T , r, γ〉,
where S defines the set of states, A the set of actions, T : S ×A → P(S)
the transition function (that maps to a probability distribution over states),
r: S × S ′ ×A → P(R) the reward function (that maps the current state, next
state and action to a probability distribution over the rewards) and γ the discount
factor. In the context of optimal control, the objective is to learn a policy that
maximizes the expected discounted return Rt =

∑T
i=t E

[
γ(i−t)r(si, si+1, ai)

]
,

where r(si, si+1, ai) is the reward function. Policy gradient methods attempt
to find a parameterized policy π(a|s; θ) that maps every state to a probability
distribution over the actions, such that the discounted return is maximized. Some
prominent examples of policy gradient methods include Advantage-actor critic
(A2C) [8] and Proximal Policy Optimization (PPO) [20].

Options: An option [26] formalizes the notion of a temporally extended sequence
of actions and is denoted by the tuple 〈I, β, πo〉. I ⊆ S denotes the initiation set
of the option, β : S → [0, 1] is the probability that the option terminates in state
s and πo is the option policy. In this work, we assume that the initiation set is
the set of all states.

Attend, Adapt and Transfer: Attend, Adapt and Transfer architecture (A2T)
[19] is a model for utilizing expert policies (or options) from N different source
tasks in order to tackle a target task. Consider N expert policies, represented
by {Ki(s)}Ni=1. Apart from the expert networks (which are fixed throughout
training), A2T has a trainable base network represented by KB(s), which is used
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to learn in regions of the state space, where the set of experts do not suffice. The
target policy KT (s) is given by:

KT (s) = wN+1(s)KB(s) +

N∑
i=1

wi(s)Ki(s) (1)

The set of weights wj(s) (for j ∈ {1 · · ·N + 1}) are attention weights and

as a consequence, satisfy the constraint
∑N+1
i=1 wj(s) = 1. KT (s) is a convex

combination of N + 1 policies and is hence also a valid policy.
In this work we use a modified version of the A2T algorithm, identical to

the version in [5]. Instead of combining the option policies using the attention
weights, the A2T agent instead selects a single option policy and persists the
same for T steps. Every option terminates, T steps after being selected. We refer
to the persistence length T as the termination limit.

This modification can be understood as a hard-attention variant of the A2T
framework. The hard-attention weights are trained using A2C since the network is
no longer differentiable. The temporal persistence of the modified A2T algorithm
forces the hierarchical agent to exploit the inherent structure present in the
option policies. We also observed an empirical improvement in performance with
the modified A2T variant and hence use the variant in all our experiments.
Henceforth, any reference to A2T refers to the modified version.

Actor-Mimic Network: Given a set of source tasks, the Actor-mimic frame-
work [17] attempts to learn a network that copies the policies of the various
experts. The loss corresponding to task i is given by:

Lipolicy =
∑
a∈A〉

πEi(a|s) log πAMN (a|s; θ) (2)

πAMN is a parameterized network that is trained using the cross-entropy
loss. The targets are generated from the expert policy πEi

. In the case where
the expert consists of Q-values, the targets are generated from the Boltzmann
distribution controlled by a temperature parameter τ . Parisotto et al. [17] uses
an additional feature regression loss which we omit in this work.

3 Option Encoder Framework

The Option Encoder attempts to find a collection of basis policies, that can
accurately characterize a collection of option policies. Let the policy of an option
j, be denoted by πj . Let the ith policy of the distilled set (intermediate layer) be
represented by πdi . The set of M “distilled” policies πd = {πdi }Mi=1 are found by
minimizing the objective given in Equation 3.

πd
∗

= arg min
πd

min
W

∑
s∈S

∑
j

L

(
πj(s),

(∑
i

wij(s)× πdi (s)

))
(3)
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W is a weight matrix with the entry in ith row and jth column denoted by
wij . The matrix W is such that

∑
i wij = 1 ∀j, which implies that the rows of

the matrix are attention weights. W can also be a function of the state s. Each
wij is a scalar such that 0 ≤ wij ≤ 1 and it indicates the contribution of distilled
policy πdi , to the reconstruction of option policy πj . The function L is a distance
measure between the two probability distributions (for example Kullback-Leibler
divergence or Huber Loss). The objective states that a convex combination of
the distilled policies should be capable of reconstructing each of the original set
of options, as accurately as possible.

Equation 3 is realized using an auto-encoder. The encoder is any suitable
neural network architecture that outputs M different policies. For example, an
encoder in a task with a discrete action space will consist of M different softmax
outputs, each of size |A| (size of action space). A continuous action space problem
will contain M sets of policy parameters (for example, the mean and variance
of a Gaussian distribution). Since the distilled policies are combined linearly, a
single layer for the decoder should suffice, since the addition of more layers will
not add any more representational power. The entire procedure is summarized in
Algorithm 1.

3.1 Architectural Constraints in the Option Encoder

The architecture is an auto-encoder with two key constraints (see Figure 1). The
first restriction is that each distilled policy has a single shared weight. Alternately,
all actions corresponding to a single policy have the same shared weight. This
ensures that the structure in the action space of the distilled policies are preserved.
The second restriction is that the set of weights responsible for reconstructing
any option policy must sum to 1. These weights are attention weights and can
be agnostic to the current state or be an arbitrary function of it.

These restrictions are imposed to respect the objective specified in Equation
3 i.e., the re-constructed expert policies are convex combinations of the distilled
policies. Furthermore the constraints ensure that the distilled policies are coherent
since a heavily parameterized decoder permits the information to be captured in
the decoder weights, as opposed to the distilled policies.

To illustrate the utility of these restrictions, consider a scenario in which
all the option policies indicate that the action a has the highest preference in
state s. Let action a be assigned the least probability after passing the options
through an encoder. If the weights are allowed to take arbitrary values on the
decoder side, the distilled policies are capable of reconstructing the options by
assigning higher weights to action a, even though it has a low probability as per
the distilled policies. Alternately, the decoder can make use of negative weights
to flip the preference order over the actions dictated by the distilled policies.

Ideally, one would want the distilled policies to capture the fact that action a is
preferred in-state s among all options. Hence, the proposed two restrictions ensure
that this intended behavior is achieved. The second restriction also ensures that
the output of the decoders are also valid policies since a weighted combination of
the policies (with the weights summing to 1) will also result in a policy.
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Algorithm 1: Summary of the Option Encoder Framework

L = Number of rollouts for building distilled policies ;
N = Number of Option policies ;
M = Number of Distilled Policies ;
K = Number of Target Goals ;
T = Number of Steps, an option is persisted ;
E = Number of Episodes for the transfer stage ;
Dataset = Empty list ;
for j in (1..... N) do

env.reset() ;
for i in (1..... L) do

Get option policies (π1(s), π2(s), · · ·πN (s)) ;
Add (s, (π1(s), π2(s), · · ·πN (s))) to Dataset;
a = Sample(πj(s)) ;
s = env.step(a) ;

end

end
DistillPolicies = train auto-encoder(Dataset) ;
for j in (1..... M) do

DistillDataset = None ;
for s in Dataset[0, :] do

π̂j(s) = DistillPolicies(j, s) ;
add π̂j(s) to DistillDataset ;

end
πj = ActorMimic(DistillDataset) ;

end
for i in (1....K) do

for j in (1....E) do
env.reset() ;
while not done do

Option id = AttentionNetwork.Sample(s) ;
for t in(1...T ) do

a = Option id.Sample(s) ;
s = env.step(a) ;
store transitions();

end
collect rollout() ;
UpdateAttentionNetwork(rollout) ;
UpdateBaseNetwork(rollout)

end

end

end

3.2 Extracting the Distilled Policies

The current setup would require the execution of the encoder in order to obtain the
distilled policies. This would, however, defeat the entire purpose of the distillation
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procedure since the encoder would require the option policies as inputs. An ideal
scenario would allow us to discard the options after the distillation. In order
to achieve the same, the distilled policies (outputs of the encoder) are utilized
as targets to train a network, using an algorithm like Actor-mimic [17]. As a
result, each distilled policy is transferred to a network using a supervised learning
procedure. The distilled policies can now be computed from the state, without
computing the option policies. Hence, the network can be used for decision-time
planning or for policy execution in the absence of the original set of options.

We do not make use of [7,6] for distillation because they are computationally
expensive and primarily address the incremental learning setup. Elastic weight
consolidation based training [7] does not easily extend to multiple tasks and
requires computing the Fisher information matrix which can be expensive for
large networks. Pathnet [6] uses a genetic algorithm to obtain a distilled network,
which can be inefficient with respect to the required number of training iterations.

4 Experiments

In this section, we describe experiments designed to answer the following ques-
tions:

– How do the distilled policies compare against the option policies on a set of
tasks?

– Why are certain restrictions imposed on the architecture?

– Is the performance gain solely due to a reduced number of policies?

– Does varying the number of distilled policies affect the performance?

– How does the termination limit of the hierarchical agent impact the perfor-
mance?

4.1 Task description

Grid-world: We consider the grid-worlds depicted in Figure 2. The grid-worlds
are stochastic where the agent moves in the intended direction with probability
0.8 and takes a random action (uniform probability) otherwise. The environment
has 4 actions available from every state, which are up, down, left and right. Each
episode terminates after 3000 environment steps. We consider a task where the
agent obtains a reward of +1 on reaching the designated goal and a reward of
0 for every other transition. Fifty options were learned using the Eigen-options
framework [11] for each grid-world which were then used to solve the task of
reaching 100 randomly selected goals. These goals are denoted by the yellow dots
on the grid-world in Figure 2. Three different grid-worlds GW1, GW2, and GW3
(left to right in Figure 2) were considered. GW1 and GW2 are of sizes 28x31 each
and GW3 is of size 41x41.
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Fig. 2. 3 grid-worlds are tackled in this work. The yellow dots indicate the goals for a
collection of tasks that we attempt to solve for in the grids GW1,GW2,GW3 (left to
right)

Deepmind Lab: The Deepmind-Lab domain [4] is a visual maze navigation task
where the inputs are images. In this work, the images are converted to grayscale
images before being used as inputs to a network. The action space is discretized
into 4 actions which are forward, backward, rotate-left and rotate right. Every
step receives a reward of -0.01 and the episode ends after reaching a designated
goal or after 3000 environment steps. The agent additionally receives a reward of
1.0 on reaching the goal and receives a reward of -1.0 if it fails to reach the goal
after 3000 steps in the environment.

4.2 Architecture overview

The state in all grid-world experiments is represented as an image of the grid
(with 1 channel) with all zeros, except at the location of the agent. We impose the
encoder to also have shared attention weights (each policy has a single attention
weight) like the decoder. This implies that the original set of options are combined
using attention weights to yield the distilled policies which are then combined
using another set of attention weights to yield the reconstructions.

Option Encoder: The encoder and the decoder are comprised of attention
weights which are functions of the current state. The state-based attention network
consists of two convolution layers (5x5x4 and stride 2 and 3x3x8 and stride 1) and
a fully connected layer with 32 units which then outputs the attention weights.
For the Deepmind-Lab task, the current state is converted into attention weights
using a network that contains 3 convolution layers (8x8x32 and stride 4, 4x4x64
and stride 2, 3x3x64 and stride 1) followed by a fully connected layer of size 512
which then outputs the attention weights.

Hierarchical Agent: The A2C algorithm with the modified A2T framework
(described in Section 2) was used to train the agent (referred to as the A2T +
A2C agent). The base network consists of 2 convolution layers (same configuration
as earlier) followed by a fully connected layer of size 128 which yields the policy
and the value function heads. The base network policy and the option policies
are combined using attention weights to yield the final policy. The termination
limit is 20 in this case.
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Fig. 3. Plot depicting the number of steps to reach the goal (performance measure) vs.
the number of environment steps on GW1, GW2, GW3 respectively (left to right)

(a) Distilling varying number of ex-
perts to 5 options

(b) Comparing 10 Eigen-options to
10 options obtained from distilling 64
Eigen-options

Fig. 4. Option Encoder is a better alternative than discarding the discovered options
and is capable of reducing a large number of options

4.3 Evaluating on Grid-worlds

50 options were obtained using the Eigen-options framework [11] where the
eigen-vectors of the graph laplacian are used to define options. The policies
corresponding to each eigen-vector are obtained using a vanilla A2C agent
(architecture identical to an A2C+A2T agent barring the attention). This is
followed by the Option Encoder framework, which distills the option policies
obtained from all states in the grid-world, into 5 distilled policies. The A2C+A2T
agent can make use of the original set of options or the distilled set, which we term
as A2C + original and A2C + distilled respectively. For both agents, the selected
option is persisted for 20 steps (termination limit) after which a new option is
selected. We also evaluate a vanilla A2C agent. Actor-mimic is another baseline
that we consider, where all the options are distilled to one policy which is used
in the A2C + A2T setup (we refer to this as A2C+AMN). Finally, we consider
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the random average agent which consists of an A2T+A2C agent attending to 5
policies and a base network. Each of the 5 policies are obtained by averaging the
policies of 10 randomly chosen option policies.

The agents are periodically evaluated every 500 environment steps and the
performance curves are presented in Figure 3. The graphs are clearly indicative
of the fact that the A2C+distilled agent outperforms all other baselines. Since
we tackle 100 different target tasks, the effort required to obtain the distilled
policies (or the options) is negligible when compared to solving the multi-task
problem. Hence, the presented performance curves are comparable.

We also vary the number of experts and distill to 5 options (Figure 4(a))
and notice that an increased number of experts, improves the performance. This
observation is further corroborated by Figure 4(b) which indicates that the top
10 Eigen-options perform worse, when compared to using a set of 10 distilled
options. In a resource constrained situation where only few options are required,
one can distill knowledge from many options to a smaller set. We also attempted
to cluster the policies using K-means on the policy space. Unsurprisingly, our
distilled policies outperformed the options obtained using K-means. The centroid
of each K-means cluster was used as a substitute for the distilled policy. We run
K-means to discover 5 clusters from 50 expert policies.

4.4 Understanding Architecture Constraints

We enforce certain restrictions on the auto-encoder as described in Section 3.1.
We conduct a qualitative analysis of different architectural variants. Remember
that the Option Encoder architecture requires the weights to be attention weights
and the policy to be a convex combination of the policies from the previous layers.
This implies that all actions of a policy share a single weight.

We consider the grid-world in Figure 5(a) with four expert options going
to the 4 corners of the top-left room. Figure 5(a) represents a heatmap of the
distribution of states visited by the 2 hidden policies generated from the Option
Encoder framework. We visualize the heatmap for following architectural variants:

(a) Option Encoder framework (b) No restriction on attention weights

Fig. 5. Heatmap of the visitation distribution of two distilled policies
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(a) No restriction on weight-sharing for
policies

(b) No restrictions on both attention
and weight-sharing

Fig. 6. Heatmap of the visitation distribution of two distilled policies

– Removing restriction on attention weights: In this case, the weights are not
fed through a softmax layer to enforce that they sum to 1. Figure 5(b)
highlights that we do not learn an interpretable policy.

– Removing restriction on weight sharing : Since the layers enforce the output
policies to be convex combinations of the input policies, each policy is assigned
a single attention weight. We instead assign a single weight for every action in
the policy increasing the number of weights by |A| (size of the action space).
Figure 6(a) again highlights that we do no learn qualitatively useful policies.

– Removing both restrictions: This case corresponds to a vanilla auto-encoder
with no constraints on the weights. An intermediate layer is interpreted as a
policy and is found to not be qualitatively interpretable (see Figure 6(b)).

4.5 Understanding the distilled policies

To understand the Option Encoder framework, we consider 16 expert policies,
each navigating to a specific goal as indicated in the left-most image in Figure
7. Each blue cell denotes a goal towards which an expert policy navigates to
optimally. These experts are distilled to 4 different policies. In order to visualize
these policies, we develop a heatmap of the visitation counts for each policy.
The heatmaps are obtained by sampling from the respective distilled policies.
The agent is executed for 50,000 steps and is reset to a random start state after
100 steps in the environment. Figure 7 demonstrates how the Option Encoder
framework captures the commonalities between various policies. We also compare
the same with the visitation count plot obtained from an Actor-mimic network
trained by combining all 16 policies.

4.6 Randomly sampling a set of options

This analysis on GW2 was conducted to demonstrate that our proposed framework
does not derive a significant advantage from using a reduced number of option
policies. 50 options were divided into 10 sets of options (each of size 5) where
each option appears in exactly one of the ten sets. Figure 8 shows that a random
sample of options can lead to vastly varying performances (based on the relevance
of the options). However, the distilled policies outperform every set of random
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Fig. 7. The leftmost figure denotes the set of 16 expert policies while the middle 4
figures (2nd to 5th image from left) visualize the visitation count of the rollouts of the
distilled policy. The rightmost figure corresponds to the visitation count of an Actor
mimic network (AMN) trained to distill 16 policies into 1 policy.

options we consider, hinting at the fact that all the options are useful for solving
a new set of tasks. Each line in Figure 8 corresponds to the average performance
over 25 randomly selected goals.

Fig. 8. Performance comparison against a few random subsets of options to show that
the performance improvement is not due to a reduced number of options

4.7 Varying the number of Distilled policies

An experiment on GW2, was conducted (see Figure 9(a)) to identify the impact of
the number of distilled policies on the final performance. The plots are indicative
of the fact that the agent is not highly sensitive to this parameter. Distilling to a
single policy yields a poor performance curve since a single policy is incapable of
capturing the variety in the fifty expert policies.

4.8 Varying termination limit

We analyze the impact of termination limit T (defined in Section 2) and obtained
the performance curves for GW2. When the termination limit is low, the agent
fails to leverage the knowledge of a useful sequence of actions since it cycles
between the various options. Hence, a higher termination limit results in a
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(a) Performance plotted for a varying number
of distilled policies.

(b) Varying the termination limit of
the A2T + A2C setup

Fig. 9. The Option Encoder is fairly robust to hyper-parameters like the number of
distilled policies or the termination limit

persistent strategy for an extended duration, thereby yielding better performance
(see Figure 9(b)). However, beyond a certain value for the termination limit, the
performance deteriorates since the agent spends an excessive amount of time on
a single option, thereby sacrificing some fine-grained control.

4.9 The Deepmind-lab task

This section evaluates the Option Encoder on the Deepmind-lab maze domain
task depicted in Figure 4.9. We consider 24 option policies, trained using PPO
[20] to navigate to goal locations shown in Figure 4.9. The agent starts from
a random location. The expert policies were distilled to 16,12 and 8 policies
using the Option Encoder. Each distilled policy was rolled out for 300 time
steps and the visitation counts were collected for all expert goal states. Figures
11(a),11(b),11(c) depict the maximum value of the visitation count among all
the options. This is compared with AMN (see Figure 11(d)) where the option
policies are distilled to a single policy. The plots are indicative of the fact that
the distilled policies obtained from the Option Encoder cover a variety of goals
and also visit them more frequently.

Fig. 10. Map used for Deepmind-lab. The white dots are sub-goals for option policies
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(a) 8 distilled policies (b) 12 distilled policies

(c) 16 distilled policies (d) AMN

Fig. 11. Maximum visitation counts the distilled policies and AMN for the goal states

5 Related Work

Several works have attempted to address the policy distillation and compression
scenario. Prior works like Actor-mimic [17] have attempted to compress a collec-
tion of policies. This framework can however distill a collection of policies into a
single policy. Our method, on the other hand, can distill the expert policies into
multiple basis policies. Pathnet [6] utilizes a large network, with weights being
frozen appropriately. However, like Actor-mimic, Pathnet only discovers a single
policy which may not have sufficient representational power. Pathnet addresses
the continual learning setup, where there is a sequence of tasks to be solved,
which may not be an appropriate approach to option pruning. The Elastic weight
consolidation loss [7], addresses a scenario identical to that addressed in Pathnet
[6] and modifies the weights using the gradient magnitude but suffers from same
problems described for the other two methods.

Option pruning has not been addressed in the context of option-discovery
in great detail. Option compression is not necessary for works like Option-critic
[2], Deep Feudal reinforcement learning [27] or a collection of other works that
discover options relevant to the current task. On the other hand, task-agnostic
option discovery methods often need a large number of options to capture diverse
behaviors. McGovern et al. [13] use a collection of filters to eliminate redundant
options and [11] have observed an improved performance when around 128 options
are used in a rather modest 4-room grid-world. Basis functions have been explored
in the context of value functions [12,9], where the structure of the graph is used to
define features for every state. On the other hand, our work uses a set of options
to define a basis over policies. Our work shares similarities with the PG-ELLA
[1] lifelong learning framework in that, both attempt to discover a shared latent
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space from which a set of tasks are solved. In this work, we focus on multi-task
learning, where the basis policies are utilized across a set of tasks.

6 Conclusion

In this work, we present the Option Encoder framework, which attempts to derive
a policy basis from a collection of option policies. The distilled policies can be
used as a substitute for the original set of options. We demonstrate the utility
of the distilled policies using an empirical evaluation on a collection of tasks.
As future work, one could extend the framework to work with value functions.
Another potential extension of this work is to the continual learning framework,
where the Option Encoder can be used to handle a set of new policies and
integrate the same with the policies learned earlier. This would involves using
the option-encoder in a batch-like manner, where the set of basis policies are
periodically refined.
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