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Abstract. Bayesian optimization (BO) is an efficient method for opti-
mizing expensive black-box functions. In real-world applications, BO of-
ten faces a major problem of missing values in inputs. The missing inputs
can happen in two cases. First, the historical data for training BO often
contain missing values. Second, when performing the function evaluation
(e.g. computing alloy strength in a heat treatment process), errors may
occur (e.g. a thermostat stops working) leading to an erroneous situa-
tion where the function is computed at a random unknown value instead
of the suggested value. To deal with this problem, a common approach
just simply skips data points where missing values happen. Clearly, this
naive method cannot utilize data efficiently and often leads to poor per-
formance. In this paper, we propose a novel BO method to handle miss-
ing inputs. We first find a probability distribution of each missing value
so that we can impute the missing value by drawing a sample from its
distribution. We then develop a new acquisition function based on the
well-known Upper Confidence Bound (UCB) acquisition function, which
considers the uncertainty of imputed values when suggesting the next
point for function evaluation. We conduct comprehensive experiments
on both synthetic and real-world applications to show the usefulness of
our method.

Keywords: Bayesian optimization · Missing data · Matrix factorization · Gaus-
sian process.

1 Introduction

Bayesian optimization (BO) [20] is a powerful tool to optimize expensive black-
box functions. Typically, at each iteration BO first models the black-box func-
tion via a statistical model e.g. a Gaussian process (GP) based on historical
data (observed data) and then seeks out the next point (suggestion) for function
evaluation by maximizing an acquisition function. BO has been successfully ap-
plied to a wide range of practical applications such as hyper-parameter tuning,
automated machine learning, material design, and robot exploration [22,15,6,16].
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Fig. 1: Four main steps in BO: (1) build a GP from the historical data [X,y],
(2) maximize an acquisition function α to get a suggested point xt, (3) evaluate
the suggested point xt with the true black-box function and obtain a function
value y, and (4) augment the historical data with the new observed point. With
the presence of missing values in (M1) historical data and (M2) new observed
point, BO faces two significant problems: it cannot build the GP at Step-1 and
it cannot use the new observed point at Step-4.

In real-world applications, BO often faces a significant problem that is miss-
ing values in inputs. As shown in Figure 1, missing values in input can happen
in two cases. First, similar to other machine learning models, the historical data
for training BO may contain missing values (missing values in historical data).
Without imputing these missing values, we cannot model the black-box function
using GP. Second, when performing the function evaluation at the suggested
point, if an error happens (e.g. failure of devices), we obtain the function value
at an unknown random point (missing values in new observed point). Missing
values in input can lead to many crucial failures in BO optimization such as
erroneous calculation, and difficulties in interpretation and representation of in-
formation [21].

To address the missing input problem in BO, one approach is to apply im-
putation methods e.g. mean/mode imputation and k-nearest neighbors (KNN)
[1,3] to fill missing values first and then apply a traditional BO method. Al-
though these imputation methods can predict missing values, their performance
is non-optimal since mean/mode methods do not consider the correlation be-
tween missing values and non-missing values while KNN strongly depends on
the current available data and distance metric [5]. Recently, more complex im-
putation methods have been introduced, including using random forest [24] and
deep neural network [26]; however, these methods require extensive training data,
which is unrealistic in the BO context where the historical data is quite limited.
Another approach is to simply apply BO to non-missing data where points with
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missing values are removed [11]. As mentioned before, this approach does not
use the data efficiently, leading to poor performance in optimization. Oliveira
et. al proposed a BO method for uncertain inputs [16], where they observe the
difference between the actual input value and the one recommended by BO, and
they estimate the variance needed to build the probability distribution of input
values. However, in the case of missing values, this variance is unknown (i.e. the
noise level added to the actual input value is unknown), their method cannot
approximate missing values well. To the best of our knowledge, there is no BO
method that can directly handle missing values in input.

Our method. To overcome the disadvantages of existing methods, we pro-
pose a novel method (named BOMI) for optimizing black-box functions with
missing values in input. In particular, we first adapt the idea of Bayesian proba-
bilistic matrix factorization (BPMF) [19] to find the distribution of each missing
value for imputation. Note that none of the imputation methods discussed above
use the distributions of missing values for imputation even though these distri-
butions are essential since they represent a certain level of noise in the actual
values. By adapting the idea of BPMF, these distributions are built using one of
the collaborative filtering technique so that the correlation between values in the
data is taken into account. We then propose a new acquisition function, based
on the widely used UCB acquisition function [23], to achieve greater confidence
in modeling the black-box function. Our new acquisition function differs from
a traditional acquisition function in a sense that it does not use one single GP
built from imputed data but leverages multiple GPs to take into account the
uncertainty of predicted values. By doing this, our method achieves an agree-
ment on the imputed values that results in a higher confidence in the posterior
predictive distribution. As a result, it improves the optimization performance
when the black-box functions involve missing inputs.

To summarize, we make the following contributions.

– Develop Bayesian Optimization with Missing Inputs (BOMI) to optimize
black-box functions with missing values in input.

– Propose a new acquisition function that takes into account the distributions
of missing values when suggesting the next point for function evaluation.

– Demonstrate the usefulness of BOMI in both synthetic and real-world appli-
cations, and show that it outperforms well-known state-of-the-art baselines.

2 Background

2.1 Bayesian optimization

Bayesian optimization (BO) is an efficient method for automatically finding the
optimum of an expensive black-box function within a small number of function
evaluations [13,4]. Given an unknown function f : X → R, our goal is to find the
optimal input x∗ = argmaxx∈X f (x), where X is a bounded domain in Rd. Since
the objective function f is expensive to evaluate, BO attempts to model f via
a surrogate model e.g. Gaussian process (GP) [17]. The function f is assumed
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to be drawn from the GP, i.e. f(x) ∼ GP(µ(x), k(x, x′)), where µ : X → R and
k : X×X → R are mean and covariance functions. Normally, µ (x) is assumed
to be zero and k is the squared exponential kernel (Equation (1)):

k(x, x′) = σ2exp(− 1

2l2
‖x− x′‖2) (1)

where σ2 is a parameter dictating the uncertainty in f , and l is a length scale
parameter which controls how quickly f can change.

Given the historical data up to iteration t, Dt = {(xi, yi)}ti=1 that contains
inputs xi and their evaluations yi = f(xi) + εi for i = 1, 2, . . . , t where εi ∼
N (0, σ2

ε ), we obtain the predictive distribution f (x) | Dt ∼ N
(
µt(x), σ2

t (x)
)

with µt(x) and σ2
t (x) as:

µt(x) = kT (K + σ2
ε I)−1y (2)

σ2
t (x) = k(x, x)− kT (K + σ2

ε I)−1k (3)

where y = (y1, ..., yt) is a vector of function evaluations, k = [k(xi, x)]∀xi∈Dt

is the covariance between a new input x and all observed inputs xi, K =
[k(xi, xj)∀xi,xj∈Dt ] is the covariance matrix between all inputs, I is an identity
matrix with the same dimension as K, and σ2

ε is a measurement noise.
BO uses the predictive mean and standard deviation in Equations (2) and

(3) in an acquisition function α(x) to find the next point to evaluate. The acqui-
sition function uses the predictive distribution to balance two contrasting goals:
sampling where the function is expected to have a high value vs. sampling where
the uncertainty about the function value is high. Some well-known acquisition
functions are Probability of Improvement (PI) [12], Expected Improvement (EI)
[10], Upper Confidence Bound (UCB) [23], and Predictive Entropy Search (PES)
[9].

Since we use UCB as a base to develop a new acquisition function (see Section
3.3) for the optimization problem with missing inputs, we describe it in detail
in the next section.

2.2 Upper Confidence Bound acquisition function

The UCB acquisition function is a weighted sum of predictive mean and variance
from Equations (2) and (3), computed as:

αUCBt (x) = µt(x) +
√
βtσt(x) (4)

where βt is the exploitation-exploration trade-off factor. Following [23], βt is

calculated as βt = 2 log
(
t22π2/3δ

)
+ 2d log

(
t2dbr

√
log (4da/δ)

)
to guarantee

an upper bound on the cumulative regret with probability greater than 1− δ in
the search space X ⊆ [0, r]

d
, where r > 0 and a, b > 0 are constants.

To suggest a next point for the black-box objective function evaluation, we
maximize the UCB acquisition function in Equation (4) as follows:

xt+1 = argmax
x∈X

αUCBt (x) (5)
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3 Framework

3.1 Problem definition

Before formally defining the problem of Bayesian optimization (BO) with missing
inputs, we provide two cases when missing values occur in inputs.

Case 1. (Missing values in historical data) Given a point x ={x1, . . . , xd}
in historical data, x contains missing values if ∃xi ∈ x (i ∈ {1, ..., d} and d is
the input dimension) such that xi is unobserved (i.e. missing), and we denote xi
by a question mark ‘?’.

Case 2. (Missing values in the next suggested point) At iteration t, when
we intend to evaluate the black-box function f at a suggested point xt ={x1, . . . , xd}t
to obtain the function value yt, two scenarios may arise. (1) Due to an error in
the evaluation, the function may actually be evaluated at x′t instead of intended
point xt. In general, we denote an element x′i of x′t using the corresponding
element of xt as x′i = xi ± η where η is an unknown noise amount. (2) In case
of no error, x′t is same as xt.

We present the problem of BO with missing inputs. Given a historical data
[X,y] and a black-box function f : X → R (X is the input domain), X may
contain missing values as mentioned in Case 1, and if we query a point xt ∈ X
to compute the function value yt = f (xt), then we may obtain yt = f (x′t) as
mentioned in Case 2. Our goal is to find the optimal point x∗ that maximizes
the black-box function f , as follows:

x∗ = arg max
x∈X

f(x) (6)

3.2 Building a probability distribution for each missing value

Let xo and xm be non-missing and missing values. An observation is denoted as
x = {xo,xm}. To solve the optimization problem in Equation (6), one simple
approach is to omit observations having missing values xm and then apply a
standard BO to observations containing only non-missing values. As discussed
in Section 1, this method may perform poorly since it has too few data points
to build a good model. To overcome this, we propose to use the distribution of a
missing value so that we can both impute it as well as utilize the uncertainty in
its prediction. Therefore, instead of directly substituting x = c (x ∈ xm and c is
a single constant value), we assume that x ∼ p (x), where p (x) is an unknown
probability distribution of x, and our goal is to find p (x) for each x ∈ xm.

We represent the observed data [X,y] as a matrix R = [X,y] ∈ RN×M+1,
where N is the number of rows (data points) and M is the number of columns
(features). Let xij be a missing value at row i and column j, andxij is assumed to

be sampled from a normal distribution p (xij) = N
(
µxij , σ

2
xij

)
. To find the dis-

tribution p (xij), we adapt the idea of Bayesian probabilistic matrix factorization
(BPMF) [19].
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Our goal is to decompose the partially-observed matrix R ∈ RN×M+1 into
a product of two smaller matrices U ∈ RN×K and V ∈ RK×M+1 such that
R ≈ UV i.e. we find two matrices U and V whose product is as close as possible
to the original matrix R.

We first construct the prior distributions on U and V as follows:

p (U | µU , ΛU ) =
∏N
i=1N

(
Ui | µU , Λ−1U

)
p (V | µV , ΛV ) =

∏M+1
j=1 N

(
Vi | µV , Λ−1V

) (7)

where ΘU = {µU , ΛU} and ΘV = {µV , ΛV } are hyper-parameters of the priors.
We learn them using Gibbs sampling [14].

Next, we sample U and V from their distributions, as in Equation (8):

U l+1
i ∼ p

(
Ui | R, V l, ΘlU

)
for i = 1, . . . , N rows

V l+1
j ∼ p

(
Vi | R,U l+1, ΘlV

)
for j = 1, . . . , (M + 1) columns

(8)

where l is the number of iterations used in Gibbs sampling.
Finally, we reconstruct R ≈ UV and the missing value xij = Rij is filled by

a linear combination of matrix product, i.e. xij = Ui,:V:,j , where Ui,: is the row
i of U and V:,j is the column j of V .

Although we can impute a missing value using xij = Ui,:V:,j , using a sin-
gle predicted value is not effective. Thus, we go a step further to obtain the
distribution p (xij) of xij . In particular, following [19] we use the Monte Carlo
approximation [14] to approximate p (xij) as:

p (xij) ≈ p (xij | Ui,:V:,j , ξ) ,

where ξ = σ2
Rij

(called precision factor) is the “width” of distribution covering

the actual value of xij . To fill/predict a missing value xij , we simply draw a
sample from its distribution x̃ij ∼ p (xij) and set xij = x̃ij .

3.3 Bayesian optimization with missing inputs (BOMI)

In Section 3.2, we find a distribution p (xij) for each missing value xij . To opti-
mize the black-box function f(x), we can simply draw a sample x̃ij ∼ p (xij) to
fill the missing value xij , and then apply a standard BO to the new non-missing
data. We call this method Imputation-BPMF. However, the performance of this
approach heavily depends on the quality of x̃ij ∼ p (xij). In other words, it does
not consider the uncertainty of x̃ij .

We propose a novel BO method to optimize black-box functions with miss-
ing inputs, called Bayesian Optimization with Missing Inputs (BOMI). Our
method has three main steps, which illustrated in Figure 2. Step 1: from the
observed data with missing values, BOMI learns a distribution for each missing
value (see Section 3.2), then uses these distributions to impute and generate Q
new non-missing data. Step 2: for each new non-missing data, BOMI builds
a GP and computes the acquisition function UCB (see Equation (4)). Step 3:
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BOMI aggregates the information from Q acquisition functions to come up with
a new acquisition function that takes into account the uncertainty of imputed
values. The new acquisition function (called UCB-MI) is described next.

Fig. 2: Three main steps in our method BOMI: (1) sample missing values from
their distributions, (2) build GPs and compute UCB acquisition functions (Equa-
tion (4)), and (3) develop a new acquisition function based on aggregated infor-
mation.

Upper Confidence Bound acquisition function for Missing Inputs (UCB-
MI). Our new acquisition function UCB-MI aggregates the information from Q
standard UCB acquisition functions computed at Step-2, as follows:

αUCB−MI(x) = µα
(
αUCB(x)

)
+ βασα

(
αUCB(x)

)
(9)

=
1

Q

Q∑
q=1

(
αUCBq (x)

)
+ βα

√√√√∑Q
q=1

(
αUCBq (x)− 1

Q

∑Q
q=1 α

UCB
q (x)

)2
Q− 1

where αUCB is the UCB acquisition function (see Equation (4)).
Our acquisition function αUCB−MI is based on the commonly used UCB ac-

quisition function, but it incorporates the posterior predictive information from
different GPs. It is described as a summation of the mean of Q acquisition values
µα (α) and their standard deviation σα (α) multiplied by a trade-off factor βα.
This acquisition function quantifies the level of agreement between Q individual
acquisition functions to determine the confidence in predicting the outcome of
an input. As a result, we have more information about the variance of one point
x and more certainty about its outcome. To suggest a next point for evaluation,
we maximize the acquisition function αUCB−MI :

xt+1 = argmax
x∈X

αUCB−MI (x) (10)

Discussion. We can see that whenQ is set to a small value, our acquisition func-
tion αUCB−MI is close to the standard acquisition function UCB αUCB . For ex-
ample, with Q = 1, the standard deviation σα

(
αUCB

)
= 0 and αUCB−MI(x) =

αUCB1 (x) + βα0 = αUCB (x).
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When Q > 1, the first term 1
Q

∑Q
q=1

(
αUCBq (x)

)
in Equation (9) represents

the average among different acquisition functions, which can be considered as an
agreement on different acquisition functions. In contrast, the second term rep-
resents the disagreement on acquisition values since it is the standard deviation
measuring how much acquisition functions differ from their mean (agreement).
The trade-off factor βα is used to control the balance between agreement and
disagreement.

Our proposed method BOMI is summarized in Algorithm 1.

Algorithm 1: The proposed BOMI algorithm.

Input: Observed data D0, # iterations T , # new non-missing data Q
1 begin
2 for t = 0, ..., T do
3 for q = 1, ..., Q do
4 Sample U(q) ∼ p (U | R, V,ΘU ) and V(q) ∼ p (V | R,U,ΘV )
5 Generate new non-missing data R(q) = U(q)V(q)

6 Build GP GP(q) ← R(q)

7 Compute acquisition function αUCB
q ← Acquisition

(
GP(q)

)
8 end

9 Compute αUCB−MI using Equation (9)

10 Suggest a next point xt+1 = argmaxx∈X αUCB−MI (x)
11 Evaluate the objective function yt+1 = f(xt+1)
12 if missing event then

13 xt+1 → x
′
t+1 (see Case 2)

14 yt+1 = f(x
′
t+1)

15 end
16 Augment Dt+1 = {Dt, (xt+1, yt+1)}
17 end

18 end

4 Experimental Results

We evaluate our proposed method BOMI in both synthetic and real-world ap-
plications. For synthetic experiments, we test our method with four benchmark
synthetic functions to show its optimization performance and stability. For real-
world experiments, we test the performance of our method in two real-world
applications, namely, a robot exploration simulation and a heat treatment pro-
cess. In these two applications, missing inputs often occur since the failures of
robots and thermostat are unmanageable.

Baselines. We compare BOMI with six state-of-the-art baselines that use
different ways to deal with missing values. They are categorized into two groups:
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– Imputation-based methods: These methods first use imputation methods
to predict missing values and then simply apply a standard BO method to
optimize the black-box functions. Here, we use three well-known imputation
methods in machine learning, namely, mean, mode, and KNN [3]. The mean
method (called Imputation-Mean) replaces a missing value by the mean of
its feature column. The mode method (called Imputation-Mode) replaces a
missing value by the mode of its feature column. The KNN method (called
Imputation-KNN ) replaces a missing value by the mean value of its k nearest
points. We also compare with Imputation-BPMF, where missing values are
imputed using the BPMF method (see Section 3.3).

– BO-based methods: Since standard BO methods cannot directly deal with
missing inputs, we consider two variants of BO. DropBO – whenever a data
point containing missing values occurs in historical data or new observed
point, this method simply skips that data point and applies a standard
BO method to non-missing data [11]. SuggestBO – similar to DropBO this
method removes data points containing missing values in historical data;
however when a new observed point contains missing values, instead of skip-
ping this new observation this method still uses it but substitutes missing
values by the values suggested by the acquisition function. We also compare
with BO-uGP [16] – a recent BO method proposed for optimizing black-box
functions with uncertain inputs. This method assumes that there is no miss-
ing values but all of them are noisy. It first maps all points into distributions
and then builds a surrogate model over the distributions of points.

Implementation details. We implement our method BOMI and all baselines
using GPyTorch [7] to accelerate matrix multiplication operations in GP infer-
ence. For a fair comparison, in our experiments we use the same kernel (squared
exponential kernel) and identical initial points for all methods. For Imputation-
KNN, we use the number of neighbors k = 5 and the Euclidean distance, follow-
ing [2]. For BO-uGP, we use the same hyper-parameter setting, as mentioned in
the paper. For our method BOMI, we set the dimension K of matrices U and
V to 15, the precision ξ=0.01, the number of new non-missing data Q = 5, and
the number of iterations in Gibbs sampling l = 40. We repeat each method 10
times and report the average result along with the standard error.

4.1 Synthetic experiments

We test our method and baselines with four benchmark synthetic functions where
their characteristics are summarized in Table 1.

Performance comparison. The first experiment illustrates how our method
BOMI outperforms other methods in terms of optimization result.

Experiment settings. We initialize 30 data points (historical data) for
each function and keep them the same for all methods. To see the effect of
missing values, we allow 80% of historical data to have missing values. When
evaluating a suggested point, there is a probability ρ (called missing rate) that
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Table 1: Characteristics of synthetic functions.
Function Dimension Range

Eggholder 2 x1, x2 ∈ [−512, 512]

Schubert 4 xi ∈ [−10, 10] for i = 1, . . . , 4

Alpine 5 xi ∈ [−10, 10] for i = 1, . . . , 5

Schwefel 5 xi ∈ [−500, 500] for i = 1, . . . , 5

the new observed point has missing values (i.e. an error occurs, see Case 2).
With this probability ρ, an amount of noise η (called missing noise) is added to
the suggested value, which is calculated as x

′

i = xi ± ηri, where xi is the actual

value suggested by the acquisition function, ri is the value range of xi, and x
′

i is
a random unknown value. In our experiments, we set ρ = 0.25 and η = 0.05 for
all functions.

(a) (b) (c) (d)

Fig. 3: Optimization results for four synthetic functions in Table 1.

Results and discussion. Figure 3 shows the optimization results for four
synthetic functions in Table 1. We can see that our method BOMI generally
outperforms other methods. On the 2d-function Eggholder (Figure 3(a)), BOMI
and Imputation-BPMF are the two best methods, where they are slightly better
than SuggestBO. When the dimension is increased up to 4 and 5 (Figure 3(b-
d)), BOMI is always the best method, and especially it significantly outperforms
other baselines on the 4d-function Schubert (Figure 3(b)).

Imputation-based methods (mean, mode, KNN, and BPMF) work fairly well;
however, their performance is not very consistent. Mean and mode imputations
often fall behind KNN since they suffer from biases. Imputation-BPMF is often
better or comparable with other imputation methods, which verifies our intuition
about the importance of distributions of missing values, as mentioned in Section
3.2. BOMI is often better than Imputation-BPMF. This clearly proves that our
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proposal of using probability distributions to impute missing values along with
the new acquisition function is more effective, as discussed in Section 3.3.

DropBO underperforms on most functions since it throws away many obser-
vations when they contain missing values, which leads to too few data to train a
good GP model. In contrast, SuggestBO is always better than DropBO since it
has more observations by replacing the missing value with the value of suggested
point. On the Eggholder function (Figure 3(a)), SuggestBO achieves a very good
performance, where it is the second-best method. However, on other functions
SuggestBO only achieves fair results since these functions vary very quickly even
with a small change in the input values. As expected, BO-uGP unsuccessfully
optimizes most functions due to its lack of the ability to handle missing values.

Stability comparison. The second experiment illustrates how different values
of three factors missing rate ρ, missing noise η, and maximum number of missing
values v affect to our method and other baselines. Note that ρ and η were defined
in the first experiment setting, while v indicates how many dimensions in a data
point contain missing values.

Experiment settings. We show the optimization result on the 5d-function
Schwefel as a function of one chosen factor while the others are fixed to their
default values. We sequentially set up three separate settings as follows:

1. Missing Rate. We fix η = 0.05 and v = 1, then let ρ ∈ [0.25, 0.65] with a
step of 0.1.

2. Missing Noise. We fix ρ = 0.25 and v = 1, then let η ∈ [0.1, 0.9] with a
step of 0.1.

3. Maximum number of missing values. We fix ρ = 0.5 and η = 0.05, then
allow v in a range of [1, d− 1], where d = 5 is the dimension of function.

Results and discussion. From Figure 4(a), we can see that when ρ in-
creases, the performance of DropBO drastically declines. This can be explained
by the fact that the number of observations in DropBO is inversely proportional
to ρ, which leads to too few data to train a good optimization model. Similarly,
BO-uGP also faces the same problem as DropBO since it has no mechanism to
handle missing values. Meanwhile, SuggestBO seems to be unstable, where its
performance drops at ρ = 0.35 and 0.45 but increases at ρ = 0.55 before going
down again at ρ = 0.65. In contrast, imputation-based methods and our method
BOMI are stable and robust to the missing rate, where the performance is just
slightly changed with different values for ρ.

From Figure 4(b), when η increases SuggestBO heavily drops since it im-
putation error increases in proportional to η. Interestingly, the performance of
DropBO does not change since the noise is only applied to observations with
missing values and DropBO does not consider these observations. BO-uGP is
the worst method in this experiment since it computes wrong probability dis-
tributions of very noisy values. Imputation-based methods except KNN wiggles
a lot, indicating that they suffer from an over-fitting. In contrast, our method
BOMI can maintain a good performance even with very high values for missing
noise (e.g. η = 0.8, 0.9).



12 P. Luong et al.

(a) (b) (c)

Fig. 4: Optimization results of our method BOMI and other methods on the
5d-fucntion Schwefel with different values for (a) missing rate ρ, (b) missing
noise η, and (c) maximum number of missing values v.

Finally, when the number of missing values increases (Figure 4(c)), all meth-
ods trend to decrease, as expected. When more values are missing, the correlation
vanishes that, in turn, reduces the optimization performance. Our method is still
the best method, where it significantly outperforms other methods. Similar to
Figures 4(a-b), DropBO and BO-uGP perform poorly in this experiment, where
they are the two worst methods.

4.2 Real-world experiments

We also demonstrate the benefits of our method in two real-world applications,
namely, robot exploration simulation [18] and heat treatment process [8].

Robot exploration simulation. We use the simulation software named Cop-
peliaSim1 v.4 to simulate an environment for a robot to explore and measure the
concentration of copper in the soil [18]. The environment is created by using the
dataset Brenda Mines2, which includes a textured terrain, trees, and bumps. Our
goal is to find the best configuration for the robot to obtain the highest percentage
of copper.

Figure 5(a) visualizes the copper percentage in the dataset Brenda Mines,
where the highest copper percentage is 1.024. This map is matched with the area
shown in Figure 5(b), where the robot needs to explore. Figure 5(b) shows the
starting location of the robot, its target location (i.e. its next location), and also
obstacles (e.g. trees and bumps). A 2-wheel robot is allowed 10 seconds to move
along a pre-calculated path to a specific next location. If the robot is unable

1 https://www.coppeliarobotics.com/
2 http://www.kriging.com/datasets/

https://www.coppeliarobotics.com/
http://www.kriging.com/datasets/
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(a) (b)

Fig. 5: (a) A visualization of copper density in the dataset Brenda Mines – the
darker blue indicates a location with more copper, and the highest copper per-
centage is 1.024. (b) A screenshot of the robot simulation using CoppeliaSim v.4
software [18] – the figure shows the starting location of the robot, its target loca-
tion (i.e. the next location it needs to move to), and obstacles in the environment,
e.g. trees and bumps.

to reach the target location within 10 seconds, it takes the measurement at the
current location before the simulation stops. On the way to the target location,
many errors such as overturn or being stuck can happen and prevent the robot
from reaching the target location. Whenever these errors occur, a certain noise
is added to the current location of the robot by the simulation software.

In this experiment, we tune four parameters X, Y , Z, and velocity of the
robot. X ∈ [1899.94, 4301.51] and Y ∈ [2177.37, 5400.19] are the coordinators
of the next location where the robot needs to move to. Z ∈ [4330.96, 5467.46]
is the depth underground that the robot needs to drill to measure the copper
percentage at the location (X,Y ). velocity ∈ [200, 700] is the speed of robot
moving; the value range of velocity is chosen according to the simulation and
path finding algorithm. We use the missing rate ρ = 0.5 and the number of
missing variables v = 1 (i.e. one of two coordinators of the robot can be missing).
We do not set value for the missing noise η since the noise is automatically added
by the simulation when errors happen.

From the result in Figure 6(a), we can see our method BOMI performs the
best, where it significantly outperforms other methods after 70 iterations. Two
imputation-based methods Imputation-KNN and Imputation-Mode perform well
in this experiment, where Imputation-KNN is the second-best method. Interest-
ing, BO-uGP shows a good performance in this application, where it is better
than SuggestBO and two other imputation-based methods. Again, the perfor-
mance of DropBO is very poor.

Heat treatment process. This is a process of heating an alloy to achieve a
desired strength. In particular, an Al-Sc alloy is posed to the heat in four stages,
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(a) (b)

Fig. 6: Optimization results on two real-world applications: (a) robot exploration
simulation and (b) heat treatment process.

where each stage has a different temperature and a different time duration. Our
goal is to choose which temperature and how long to heat the alloy at each stage
to maximize its strength.

To simulate the heat treatment process for Al-Sc alloy, we use the Kampmann-
Wagner model [25], same as in [8]. At each stage, there are two values to set,
temperature te (in °C) and time ti (in second). In total, we tune eight parame-
ters, including te1 ∈ [1, 100] , te2 ∈ [1, 1000] , te3 ∈ [1, 1000] , te4 ∈ [1, 1000], and
the heating times tik ∈ [1, 21600] for k ∈ {1, 2, 3, 4}. Since both temperature and
heating time can be missing, we set the missing rate and missing noise ρ1 = 0.35,
η1 = 0.8 for temperature and ρ2 = 0.25, η2 ∈ [0.7, 0.9] for heating time.

Figure 6(b) shows the optimization result for the heat treatment process. We
can see our method BOMI is the best method, where it slightly outperforms
the second-best method Imputation-KNN. Two BO-based methods SuggestBO
and BO-uGP perform well and become the third-best method. It can be seen
that BO methods are generally better than imputation-based methods in this
experiment. We also see DropBO performs very poorly; it can be concluded that
this method is not favorable in practice.

The results in Figure 6 again confirm the real benefits of our method not only
in synthetic applications but also in real-world applications when optimizing
black-box functions with missing inputs.
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5 Conclusion

We have presented a novel BO method BOMI to optimize expensive black-box
functions with missing values in inputs. Our method computes the distributions
of missing values for imputation and develops a new acquisition function that
takes into account the uncertainty of imputed values to suggest the next point
with more confidence. We demonstrate the efficiency of BOMI with several
benchmark synthetic functions and two real-world applications in robot explo-
ration simulation and heat treatment process. The empirical results show that
BOMI has a better and more stable performance compared to state-of-the-art
baselines, especially in experiments with high missing rates. Our future work will
focus on improving the prediction of missing values, which can help to improve
the performance of our method.
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