Skip to main content

Mutual Information Measure for Image Segmentation Using Few Labels

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12460))

  • 1364 Accesses

Abstract

Recently several models have been developed to reduce the annotation effort which is required to perform semantic segmentation. Instead of learning from pixel-level annotations, these models learn from cheaper annotations, e.g. image-level labels, scribbles or bounding boxes. However, most of these models cannot easily be adapted to new annotations e.g. new classes since it requires retraining the model. In this paper, we propose a similarity measure between pixels based on a mutual information objective to determine whether these pixels belong to the same class. The mutual information objective is learned in a fully unsupervised manner while the annotations (e.g. points or scribbles) are only used during test time. For a given image, the unlabeled pixels are classified by computing their nearest-neighbors in terms of mutual information from the set of labeled pixels. Experimental results are reported on the Potsdam dataset and Sentinel-2 data is used to provide a real world use case where a large amount of unlabeled satellite images is available but only a few pixels can be labeled. On the Potsdam dataset, our model achieves 70.22% mIoU and 87.17% accuracy outperforming the state-of-the-art weakly-supervised methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  2. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34

    Chapter  Google Scholar 

  3. Belghazi, M.I., et al.: Mutual information neural estimation. In: Proceedings of the 35th International Conference on Machine Learning (2018)

    Google Scholar 

  4. Chechik, G., Sharma, V., Shalit, U., Bengio, S.: Large scale online learning of image similarity through ranking. J. Mach. Learn. Res. 11, 1109–1135 (2010)

    Google Scholar 

  5. Chen, Y., Pont-Tuset, J., Montes, A., Van Gool, L.: Blazingly fast video object segmentation with pixel-wise metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  6. Drusch, M., et al.: Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012)

    Google Scholar 

  7. ESA: The copernicus open access hub. https://scihub.copernicus.eu/

  8. Fathi, A., et al.: Semantic instance segmentation via deep metric learning. CoRR (2017). http://arxiv.org/abs/1703.10277

  9. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: International Conference on Learning Representations (2019)

    Google Scholar 

  10. International Society for Photogrammetry and Remote Sensing: ISPRS 2D semantic labeling contest. http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html

  11. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2019)

    Google Scholar 

  12. Joon Oh, S., Benenson, R., Khoreva, A., Akata, Z., Fritz, M., Schiele, B.: Exploiting saliency for object segmentation from image level labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  13. Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)

    Google Scholar 

  15. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  17. Nowozin, S., Cseke, B., Tomioka, R.: f-GAN: training generative neural samplers using variational divergence minimization. In: Advances in Neural Information Processing Systems, pp. 271–279 (2016)

    Google Scholar 

  18. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. CoRR (2018). http://arxiv.org/abs/1807.03748

  19. Ozair, S., Lynch, C., Bengio, Y., van den Oord, A., Levine, S., Sermanet, P.: Wasserstein dependency measure for representation learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  20. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut” interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23, 309–314 (2004)

    Google Scholar 

  21. Sanchez, E.H., Serrurier, M., Ortner, M.: Learning disentangled representations via mutual information estimation. CoRR (2019). http://arxiv.org/abs/1912.03915

  22. Sun, J., Xu, Z.: Neural diffusion distance for image segmentation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  23. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. CoRR (2019). http://arxiv.org/abs/1906.05849

  24. Xian, Y., Choudhury, S., He, Y., Schiele, B., Akata, Z.: Semantic projection network for zero-and few-label semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the projects SYNAPSE and DEEL of the IRT Saint Exupéry for funding to conduct our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo H. Sanchez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sanchez, E.H., Serrurier, M., Ortner, M. (2021). Mutual Information Measure for Image Segmentation Using Few Labels. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67667-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67666-7

  • Online ISBN: 978-3-030-67667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics