Skip to main content

On-Site Gamma-Hadron Separation with Deep Learning on FPGAs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12460))

Abstract

Modern high-energy astroparticle experiments produce large amounts of data everyday in continuous high-volume streams. The First G-APD Cherenkov Telescope (FACT) aims at detecting particle showers of gamma rays, because cosmic events can be derived from the energy and angle of gamma rays. The separation of gamma rays from background noise, which is inevitably recorded, is called the Gamma-Hadron separation problem. Current solutions heavily rely on hand-crafted features. The current approach computes these features in a long data processing pipeline and trains a random forest classifier for the Gamma-Hadron separation. The overall machine learning pipeline is executed on commodity computer hardware after an event has occurred. In this paper, we propose an alternative approach which applies (Binary) Convolutional Neural Networks (B-CNN) directly to the raw feature stream of the telescope’s camera. We investigate if these models can be executed on commodity hardware available at the telescope to handle its datastream in real time. For fully Binary Neural Networks we also study the use of FPGAs for inference. Our experiments show that this approach outperforms hand-crafted features and random forests by a large margin, while still being applicable in real-time for moderate sized models. Furthermore, we show that our approach does not only work well on simulated data, but also on real cosmic events originating in the Crab Nebula, a supernova remnant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Date March 17, 2020. https://github.com/Xilinx/finn.

  2. 2.

    https://onnx.ai/.

  3. 3.

    https://jinja.palletsprojects.com/en/2.11.x/.

  4. 4.

    https://fact-project.org/data/.

  5. 5.

    https://microsoft.github.io/onnxruntime/.

  6. 6.

    We found that using fewer clocks improved latency because loops can be unrolled.

References

  1. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pp. 1–70 (2008)

    Google Scholar 

  2. Anderhub, H., et al.: Design and operation of FACT-the first G-APD Cherenkov telescope. J. Instrum. 8(6), P06008–P06008 (2013)

    Google Scholar 

  3. Biland, A., et al.: Calibration and performance of the photon sensor response of FACT - the first G-APD Cherenkov telescope. J. Instrum. 9(10), P10012–P10012 (2014)

    Google Scholar 

  4. Bockermann, C., et al.: Online analysis of high-volume data streams in astroparticle physics. In: Bifet, A., et al. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 100–115. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8_7

    Chapter  Google Scholar 

  5. Carroll, B.W., Ostlie, D.A.: An Introduction to Modern Astrophysics. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  6. Fomin, V.P., Stepanian, A.A., Lamb, R.C., Lewis, D.A., Punch, M., Weekes, T.C.: New methods of atmospheric Cherenkov imaging for gamma-ray astronomy. I. The false source method. Astropart. Phys. 2(2), 137–150 (1994)

    Google Scholar 

  7. Fraser, N.J., et al.: Scaling binarized neural networks on reconfigurable logic. In: PARMA-DITAM 2017, pp. 25–30 (2017)

    Google Scholar 

  8. Heck, D., Knapp, J., Capdevielle, J.N., Schatz, G., Thouw, T.: CORSIKA: a Monte Carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe GmbH, Karlsruhe (Germany) (1998)

    Google Scholar 

  9. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) NIPS, vol. 29, pp. 4107–4115. Curran Associates, Inc. (2016)

    Google Scholar 

  10. Kieda, D., Collaboration, V., et al.: Status of the veritas ground based GeV/TeV gamma-ray observatory. Bull. Am. Astron. Soc. 36, 910 (2004)

    Google Scholar 

  11. Lacey, G., Taylor, G.W., Areibi, S.: Deep learning on FPGAs: past, present, and future. arXiv preprint arXiv:1602.04283 (2016)

  12. Li, T.P., Ma, Y.Q.: Analysis methods for results in gamma-ray astronomy. Astrophys. J. 272, 317–324 (1983)

    Google Scholar 

  13. May, M.: Effizente Bildverarbeitung hexagonaler Strukturen mittels Deep Convolutional Neural Networks. Master’s thesis (2018)

    Google Scholar 

  14. Mueller, S., et al.: Single photon extraction for FACT’s SiPMs allows for novel IACT event representation. In: Proceedings of Science (2017)

    Google Scholar 

  15. Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation deep neural networks? In: ACM FPGA 2017, pp. 5–14 (2017)

    Google Scholar 

  16. Nöthe, M.: Improving the Angular Resolution of FACT Using Machine Learning. Tu Dortmund University, Dortmund, Technical report (2017)

    Google Scholar 

  17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. NeurIP 32, 8024–8035 (2019)

    Google Scholar 

  18. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  19. Petry, D.: The magic telescope-prospects for GRB research. Astron. Astrophys. Suppl. Ser. 138(3), 601–602 (1999)

    Article  Google Scholar 

  20. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and beyond. In: International Conference on Learning Representations (2018)

    Google Scholar 

  21. Ruhe, T., Elsässer, D., Rhode, W., Nöthe, M., Brügge, K.: Cherenkov telescope ring - an idea for world wide monitoring of the VHE Sky (2019)

    Google Scholar 

  22. Rötner, S.: Deep Learning on Raw Telescope Data. Master’s thesis (2017)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Umuroglu, Y., et al.: FINN: a framework for fast, scalable binarized neural network inference. In: ACM FPGA 2017, pp. 65–74 (2017)

    Google Scholar 

  25. Venieris, S.I., Kouris, A., Bouganis, C.S.: Toolflows for mapping convolutional neural networks on FPGAs: a survey and future directions. ACM Comput. Surv. 51(3), 39 (2018)

    Google Scholar 

  26. Zadrozny, B., Elkan, C.: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In: In Proceedings of the 18th International Conference on Machine Learning, pp. 609–616. Morgan Kaufmann (2001)

    Google Scholar 

  27. Zhao, R., et al.: Accelerating binarized convolutional neural networks with software-programmable FPGAs. In: ACM FPGA 2017, pp. 15–24 (2017)

    Google Scholar 

  28. Zhuang, B., Shen, C., Tan, M., Liu, L., Reid, I.: Structured binary neural networks for accurate image classification and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 413–422 (2019)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 “Providing Information byResource-Constrained Analysis”, project A1 and C3 (http://sfb876.tu-dortmund.de/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Buschjäger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 228 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buschjäger, S., Pfahler, L., Buss, J., Morik, K., Rhode, W. (2021). On-Site Gamma-Hadron Separation with Deep Learning on FPGAs. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67667-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67666-7

  • Online ISBN: 978-3-030-67667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics