Skip to main content

Prediction of Global Navigation Satellite System Positioning Errors with Guarantees

  • Conference paper
  • First Online:
Book cover Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (ECML PKDD 2020)

Abstract

Intelligent Transportation Systems employ different localization technologies, such as the Global Navigation Satellite System. This system transmits signals between satellite and receiver devices on the ground which can estimate their position on earth’s surface. The accuracy of this positioning estimate, or the positioning error estimation, is of utmost importance for the efficient and safe operation of autonomous vehicles, which require not only the position estimate, but also an estimation of their operation margin. This paper proposes a workflow for positioning error estimation using a random forest regressor along with a post-hoc conformal prediction framework. The latter is calibrated on the random forest out-of-bag samples to transform the obtained positioning error estimates into predicted integrity intervals, which are confidence intervals on the positioning error prediction with at least 99.999\(\%\) confidence. The performance is measured as the number of ground truth positioning errors inside the predicted integrity intervals. An extensive experimental evaluation is performed on real-world and synthetic data in terms of root mean square error between predicted and ground truth positioning errors. Our solution results in an improvement of 73\(\%\) compared to earlier research, while providing prediction statistical guarantees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is the error margin in the positioning of the receiver due to the spatial distribution of the satellites.

  2. 2.

    https://github.com/alku7660/gnss_position_error_guarantees.

References

  1. Belhajem, I., Maissa, Y.B., Tamtaoui, A.: Improving vehicle localization in a smart city with low cost sensor networks and support vector machines. Mob. Netw. Appl. 23(4), 854–863 (2017). https://doi.org/10.1007/s11036-017-0879-9

    Article  Google Scholar 

  2. Wang, L., Li, Z., Zao, J., Zhou, K., Wang, Z., Yuan, H.: Smart device-supported BDS/GNSS real-time kinematic positioning for sub-meter-level accuracy in urban location-based services. Sensors J. 16, 1–15 (2016)

    Google Scholar 

  3. Wörner, M., Schuster, F., Dölitzscher, F., Keller, C.G., Haueis, M., Dietmayer, K.: Integrity for autonomous driving: a survey. In: IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 666–671 (2016)

    Google Scholar 

  4. Blomenhofer, H., Ehret, W., Su, H., Blomenhofer, E.: Sensitivity analysis of the GALILEO integrity performance dependent on ground sensor station network. In: ION GNSS 18th International Technical Meeting of Satellite Division, pp. 1361–1373 (2005)

    Google Scholar 

  5. Karlsson, E., Mohammadiha, N.: A statistical GPS error model for autonomous driving. In: Proceedings of the IEEE Intelligent Vehicles Symposium, pp. 754–759 (2018)

    Google Scholar 

  6. Parakkal, P.G., Variyar., S.V.V.: GPS based navigation system for autonomous car. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1888–1893 (2017)

    Google Scholar 

  7. El Abbous, A., Samanta., N.: A modeling of GPS error distributions. In: European Navigation Conference (ENC), pp. 119–127 (2017)

    Google Scholar 

  8. Lee, G., Rodriguez, C., Madabhushi, A.: An empirical comparison of dimensionality reduction methods for classifying gene and protein expression datasets. In: Măndoiu, I., Zelikovsky, A. (eds.) ISBRA 2007. LNCS, vol. 4463, pp. 170–181. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72031-7_16

    Chapter  Google Scholar 

  9. Joardar, S., Siddique., T.A., Alam, S., Hossam-E-Haider, M.: Analyses of different types of errors for better precision in GNSS. In: 3rd International Conference on Electrical Engineering and Information and Communication Technology, pp. 1–6 (2016)

    Google Scholar 

  10. Molnar, C.: Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/limo.html. Accessed 2 Mar 2020

  11. Radi, A., Nassar., S., Khedr, M., El-Sheimy, N., Molinari, R., Guerrier, S.: Improved stochastic modelling of low-cost GNSS receivers positioning errors. In: IEEE/ION Position, Location and Navigation Symposium (PLANS), pp. 108–117 (2018)

    Google Scholar 

  12. Tang, D., Lu, D., Baigen, C., Wang, J.: GNSS localization propagation error estimation considering environmental conditions. In: 16th International Conference on Intelligent Transportation Systems Telecommunications (ITST), pp. 1–7 (2018)

    Google Scholar 

  13. Zimmermann, F., Schmitz, B., Klingbeil, L., Kuhlmann, H.: GPS multipath analysis using Fresnel zones. Sensors J. 19, 25 (2018)

    Google Scholar 

  14. Bauer, S., Obst, M., Wanielik, G.: 3D environment modeling for GPS multipath detection in urban areas. In: International Multiconference on Systems, Signals and Devices (SSD), pp. 1–5 (2012)

    Google Scholar 

  15. Kuratomi, A.: GNSS position error estimated by machine learning techniques with environmental information input. M.Sc. Mechatronics, KTH, Sweden (2019)

    Google Scholar 

  16. Yang, S., Tabatowski-Bush, B., Xiang, W.: Build up a real-time LSTM positioning error prediction model for GPS sensors. In: 90th IEEE Vehicular Technology Conference (VTC), pp. 1–5 (2019)

    Google Scholar 

  17. Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R., et. al.: Multi-horizon time series forecasting with temporal attention learning. In: 25th SIGKDD Conference on Knowledge Discovery and Data Mining (ADST), pp. 2527–2535 (2019)

    Google Scholar 

  18. Amrhein, V., Korner-Nievergelt, F., Roth, T.: The earth is flat (p \(>\) 0.05): significance thresholds and the crisis of unreplicable research. PeerJ. 5, e3544 (2015)

    Google Scholar 

  19. Suzuki, T., Kitamura, M., Yoshiharu, A., Hashizume, T.: High accuracy GPS and GLONASS positioning by multipath mitigation using omnidirectional infrared camera. In: IEEE International Conference on Robotics and Automation, pp. 311–316 (2011)

    Google Scholar 

  20. Pereira, S., et al.: Enhancing interpretability of automatically extracted machine learning features: application to a RBM-random forest system on brain lesion segmentation. Med. Image Anal. 44, 228–244 (2018)

    Google Scholar 

  21. Boström, H., Linusson, H., Löfström, T., Johansson, U.: Accelerating difficulty estimation for conformal regression forests. Ann. Math. Artif. Intell. 81(1), 125–144 (2017). https://doi.org/10.1007/s10472-017-9539-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Bostrom, H., Asker, L., Gurung, R., Karlsson, I., Lindgren, T., Papapetrou, P.: Conformal prediction using random survival forests. In: 16th IEEE International Conference on Machine Learning and Applications (ICMLA), Cancun, pp. 812–817 (2017). https://doi.org/10.1109/ICMLA.2017.00-57

  23. Gong, H., Chen, C., Bialostozky, E., Lawson, C.: A GPS/GIS method for travel mode detection in New York City. Comput. Environ. Urban Syst. 36, 131–139 (2012)

    Google Scholar 

Download references

Acknowledgements

We thank the company Waysure Sweden AB for supporting this research project, providing the real-world dataset, and their GNSS experts input for the feature selection process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alejandro Kuratomi , Tony Lindgren or Panagiotis Papapetrou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuratomi, A., Lindgren, T., Papapetrou, P. (2021). Prediction of Global Navigation Satellite System Positioning Errors with Guarantees. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67667-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67666-7

  • Online ISBN: 978-3-030-67667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics