Skip to main content

A Context-Aware Approach to Detect Abnormal Human Behaviors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12460))

Abstract

Abnormal human behaviors can be signs of a health issue or the occurrence of a hazardous incident. Detecting such behaviors is essential in Ambient Intelligent (AmI) systems to enhance the safety of people. While detecting abnormalities has been extensively explored in different domains, there are still some challenges for developing efficient approaches dealing with the limitations of data-driven approaches to detect abnormal human behaviors in AmI systems. In this paper, a novel approach is proposed to detect such behaviors exploiting the contextual information of human behaviors. Machine-learning models are firstly used to recognize human activities, locations, and objects. Different contexts of human behaviors are then extracted in terms of the duration, frequency, time of the day, locations, used objects, and sequences of the frequent recognized activities. An ontology, called Human ACtivity ONtology (HACON), is proposed to conceptualize the contexts of human behaviors. Finally, a probabilistic version of ASP, a high-level expressive logic-based formalism, is proposed to detect abnormal behaviors through a set of rules based on the HACON ontology. The proposed approach is evaluated in terms of precision, recall, F-measure, and accuracy using two datasets, namely Orange4Home dataset and HAR dataset using smartphones. The evaluation results demonstrate the ability of the proposed approach to detect abnormal human behaviors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Computational Intelligence, p. 6 (2013)

    Google Scholar 

  2. Aran, O., Sanchez-Cortes, D., Do, M.-T., Gatica-Perez, D.: Anomaly detection in elderly daily behavior in ambient sensing environments. In: Chetouani, M., Cohn, J., Salah, A.A. (eds.) HBU 2016. LNCS, vol. 9997, pp. 51–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46843-3_4

    Chapter  Google Scholar 

  3. Arifoglu, D., Bouchachia, A.: Activity recognition and abnormal behaviour detection with recurrent neural networks. Procedia Comput. Sci. 110, 86–93 (2017). 14th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2017)

    Google Scholar 

  4. Banovic, N., Buzali, T., Chevalier, F., Mankoff, J., Dey, A.K.: Modeling and understanding human routine behavior. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, CHI 2016, pp. 248–260. ACM, New York (2016)

    Google Scholar 

  5. Bruno, B., Mastrogiovanni, F., Sgorbissa, A., Vernazza, T., Zaccaria, R.: Analysis of human behavior recognition algorithms based on acceleration data. In: IEEE International Conference on Robotics and Automation, pp. 1602–1607, May 2013

    Google Scholar 

  6. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of routine daily activities in an instrumented home. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.) UCAmI 2017. LNCS, vol. 10586, pp. 413–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67585-5_43

    Chapter  Google Scholar 

  7. Cumin, J., Ramparany, F., Crowley, J.L., et al.: Inferring availability for communication in smart homes using context. In: IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 1–6. IEEE (2018)

    Google Scholar 

  8. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5(1), 4–7 (2001)

    Article  Google Scholar 

  9. Durand, V.M., Barlow, D.H.: Essentials of abnormal psychology. Cengage Learning Boston (2012)

    Google Scholar 

  10. Forkan, A.R.M., Khalil, I., Tari, Z., Foufou, S., Bouras, A.: A context-aware approach for long-term behavioural change detection and abnormality prediction in ambient assisted living. Pattern Recogn. 48(3), 628–641 (2015)

    Article  Google Scholar 

  11. Gayathri, K., Easwarakumar, K., Elias, S.: Probabilistic ontology based activity recognition in smart homes using Markov logic network. Knowl.-Based Syst. 121, 173–184 (2017)

    Article  Google Scholar 

  12. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + Control: Preliminary Report. arXiv:1405.3694 [cs], May 2014

  13. Kordestani, H., et al.: Hapicare: a healthcare monitoring system with self-adaptive coaching using probabilistic reasoning. In: 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications (AICCSA), pp. 1–8. IEEE (2019)

    Google Scholar 

  14. Lago, P., Jiménez-Guarín, C., Roncancio, C.: Contextualized behavior patterns for ambient assisted living. In: Salah, A.A., Kröse, B.J.A., Cook, D.J. (eds.) HBU 2015. LNCS, vol. 9277, pp. 132–145. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24195-1_10

    Chapter  Google Scholar 

  15. Lawton, M.P., Brody, E.M.: Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9(3\(\_\)Part\(\_\)1), 179–186 (1969)

    Google Scholar 

  16. Lentzas, A., Vrakas, D.: Non-intrusive human activity recognition and abnormal behavior detection on elderly people: a review. Artif. Intell. Rev. 53(3), 1975–2021 (2019). https://doi.org/10.1007/s10462-019-09724-5

    Article  Google Scholar 

  17. Lifschitz, V.: Answer set planning. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 373–374. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46767-X_28

    Chapter  MATH  Google Scholar 

  18. Lifschitz, V.: Answer Set Programming. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-24658-7

    Book  MATH  Google Scholar 

  19. Lühr, S., West, G., Venkatesh, S.: Recognition of emergent human behaviour in a smart home: a data mining approach. Pervasive Mob. Comput. 3(2), 95–116 (2007)

    Article  Google Scholar 

  20. Mabrouk, A.B., Zagrouba, E.: Abnormal behavior recognition for intelligent video surveillance systems: a review. Expert Syst. Appl. 91, 480–491 (2018)

    Article  Google Scholar 

  21. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview. W3C Recomm. 10(10) (2004)

    Google Scholar 

  22. Mojarad, R., Attal, F., Chibani, A., Fiorini, S.R., Amirat, Y.: Hybrid approach for human activity recognition by ubiquitous robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5660–5665, October 2018

    Google Scholar 

  23. Mojarad, R., Attal, F., Chibani, A., Amirat, Y.: Automatic classification error detection and correction for robust human activity recognition. IEEE Robot. Autom. Lett. 5(2), 2208–2215 (2020)

    Article  Google Scholar 

  24. Monekosso, D.N., Remagnino, P.: Behavior analysis for assisted living. IEEE Trans. Autom. Sci. Eng. 7(4), 879–886 (2010)

    Article  Google Scholar 

  25. Reiss, A., Hendeby, G., Stricker, D.: A competitive approach for human activity recognition on smartphones. In: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 24–26 April, pp. 455–460 (2013)

    Google Scholar 

  26. Riboni, D., Bettini, C., Civitarese, G., Janjua, Z.H., Helaoui, R.: Fine-grained recognition of abnormal behaviors for early detection of mild cognitive impairment. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), pp. 149–154 (2015)

    Google Scholar 

  27. Rodríguez, N.D., Cuéllar, M.P., Lilius, J., Calvo-Flores, M.D.: A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4), 43:1–43:33 (2014)

    Google Scholar 

  28. Romera-Paredes, B., Aung, M.S., Bianchi-Berthouze, N.: A one-vs-one classifier ensemble with majority voting for activity recognition. In: ESANN (2013)

    Google Scholar 

  29. Shen, Y.D., Eiter, T.: Evaluating epistemic negation in answer set programming. Artif. Intell. 237, 115–135 (2016)

    Article  MathSciNet  Google Scholar 

  30. Shin, J.H., Lee, B., Park, K.S.: Detection of abnormal living patterns for elderly living alone using support vector data description. Trans. Inf. Tech. Biomed. 15(3), 438–448 (2011)

    Article  Google Scholar 

  31. Soto-Mendoza, V., García-Macías, J.A., Chávez, E., Gomez-Montalvo, J.R., Quintana, E.: Detecting abnormal behaviours of institutionalized older adults through a hybrid-inference approach. Pervasive Mob. Comput. 40, 708–723 (2017)

    Article  Google Scholar 

  32. Speer, R., Chin, J., Havasi, C.: ConceptNet 5.5: an open multilingual graph of general knowledge. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  33. Sun, J., Shao, J., He, C.: Abnormal event detection for video surveillance using deep one-class learning. Multimed. Tools Appl. 78(3), 3633–3647 (2017). https://doi.org/10.1007/s11042-017-5244-2

    Article  Google Scholar 

  34. Van Haaren, J., Van den Broeck, G., Meert, W., Davis, J.: Lifted generative learning of Markov logic networks. Mach. Learn. 103(1), 27–55 (2016)

    Article  MathSciNet  Google Scholar 

  35. Wang, Y., Zhu, R., Wang, Z., Zhang, X., Zhang, B.: Logic-based online complex event rule learning with weight optimization. In: 2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC), pp. 150–155 (2019)

    Google Scholar 

  36. Wong, W.K., Moore, A., Cooper, G., Wagner, M.: Rule-based anomaly pattern detection for detecting disease outbreaks. In: AAAI/IAAI, pp. 217–223 (2002)

    Google Scholar 

  37. Xiang, T., Gong, S.: Video behavior profiling for anomaly detection. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 893–908 (2008)

    Article  Google Scholar 

  38. Zambrana, C., Palou, X.R., Vargiu, E.: Sleeping recognition to assist elderly people at home. Artif. Intell. Res. 5(2), 64–69 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roghayeh Mojarad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mojarad, R., Attal, F., Chibani, A., Amirat, Y. (2021). A Context-Aware Approach to Detect Abnormal Human Behaviors. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67667-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67666-7

  • Online ISBN: 978-3-030-67667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics