Skip to main content

A Survey on Security and Performance Optimization of Blockchain

  • Conference paper
  • First Online:
  • 1156 Accesses

Abstract

This paper investigates the security issues and performance optimization of the blockchain. Security has been a hot topic in blockchain technology. Stealing cryptocurrency and disclosing the privacy of transaction process have exposed the vulnerability of blockchain in different degrees. These vulnerabilities not only caused significant losses to the project team and users, but also raised doubts about the security of the blockchain. As a formalized contract in the code, smart contracts provide a more convenient method than traditional ones, while they increase the risk of blockchain. Moreover, secure transactions should resist external attacks and protect user privacy. In addition, the performance analysis of blockchain has also aroused great interest. Therefore, this paper summarizes the related work of blockchain performance analysis from the following three aspects to promote the further research of blockchain: simulation systems of blockchain, evaluation of blockchain network and optimization of blockchain application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alharby, M., van Moorsel, A.: BlockSim: a simulation framework for blockchain systems. ACM SIGMETRICS Perform. Eval. Rev. 46(3), 135–138 (2019)

    Article  Google Scholar 

  2. Amiri, M.J., Agrawal, D., El Abbadi, A.: ParBlockchain: leveraging transaction parallelism in permissioned blockchain systems. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1337–1347. IEEE (2019)

    Google Scholar 

  3. Athalye, A., Belay, A., Kaashoek, M.F., Morris, R., Zeldovich, N.: Notary: a device for secure transaction approval. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 97–113 (2019)

    Google Scholar 

  4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart contracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6_8

    Chapter  Google Scholar 

  5. Banno, R., Shudo, K.: Simulating a blockchain network with SimBlock. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 3–4. IEEE (2019)

    Google Scholar 

  6. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31

    Chapter  Google Scholar 

  7. Borkowski, M., Sigwart, M., Frauenthaler, P., Hukkinen, T., Schulte, S.: DeXTT: deterministic cross-blockchain token transfers. IEEE Access 7, 111030–111042 (2019)

    Article  Google Scholar 

  8. Cheng, Z., et al.: Towards a first step to understand the cryptocurrency stealing attack on ethereum. In: 22nd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2019), pp. 47–60 (2019)

    Google Scholar 

  9. Chitra, T., Quaintance, M., Haber, S., Martino, W.: Agent-based simulations of blockchain protocols illustrated via kadena’s chainweb. In: 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), pp. 386–395. IEEE (2019)

    Google Scholar 

  10. Cook, T., Latham, A., Lee, J.H.: DappGuard: active monitoring and defense for solidity smart contracts (2017). Accessed 18 July 2018

    Google Scholar 

  11. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling blockchain: a data processing view of blockchain systems. IEEE Trans. Knowl. Data Eng. 30(7), 1366–1385 (2018)

    Article  Google Scholar 

  12. Dong, Z., Zheng, E., Choon, Y., Zomaya, A.Y.: DAGBENCH: a performance evaluation framework for DAG distributed ledgers. In: 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 264–271. IEEE (2019)

    Google Scholar 

  13. Hajdu, Á., Jovanović, D.: solc-verify: a modular verifier for solidity smart contracts. In: Chakraborty, S., Navas, J.A. (eds.) VSTTE 2019. LNCS, vol. 12031, pp. 161–179. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41600-3_11

    Chapter  Google Scholar 

  14. Javaid, H., Hu, C., Brebner, G.: Optimizing validation phase of hyperledger fabric. In: 2019 IEEE 27th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 269–275. IEEE (2019)

    Google Scholar 

  15. Kim, S.: Impacts of mobility on performance of blockchain in VANET. IEEE Access 7, 68646–68655 (2019)

    Article  Google Scholar 

  16. Krupp, J., Rossow, C.: teEther: gnawing at ethereum to automatically exploit smart contracts. In: 27th USENIX Security Symposium (USENIX Security 2018), pp. 1317–1333 (2018)

    Google Scholar 

  17. Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of Monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_9

    Chapter  Google Scholar 

  18. Li, X., Mei, Y., Gong, J., Xiang, F., Sun, Z.: A blockchain privacy protection scheme based on ring signature. IEEE Access 8, 76765–76772 (2020)

    Article  Google Scholar 

  19. Lind, J., Naor, O., Eyal, I., Kelbert, F., Sirer, E.G., Pietzuch, P.: Teechain: a secure payment network with asynchronous blockchain access. In: Proceedings of the 27th ACM Symposium on Operating Systems Principles, pp. 63–79 (2019)

    Google Scholar 

  20. Maxwell, G.: CoinSwap: transaction graph disjoint trustless trading, October 2013

    Google Scholar 

  21. Novo, O.: Scalable access management in IoT using blockchain: a performance evaluation. IEEE Internet Things J. 6(3), 4694–4701 (2018)

    Article  Google Scholar 

  22. Pandey, S., Ojha, G., Shrestha, B.: BlockSim: a practical simulation tool for optimal network design, stability and planning. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 133–137. IEEE (2019)

    Google Scholar 

  23. Phillips, R., Wilder, H.: Tracing cryptocurrency scams: clustering replicated advance-fee and phishing websites. arXiv e-prints (2020)

    Google Scholar 

  24. Setty, S., Basu, S., Zhou, L., Stephenson, J., Venkatesan, R.: Enabling secure and resource-efficient blockchain networks with volt. Technical report, MSR-TR-2017-38, Microsoft, August 2017. https://www.microsoft.com/en-us/research/publication/enabling-secure-resource-efficient-blockchain-networks-volt/

  25. Shbair, W.M., Steichen, M., François, J., State, R.: BlockZoom: large-scale blockchain testbed. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency (ICBC), pp. 5–6. IEEE (2019)

    Google Scholar 

  26. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  27. Sun, Y., Zhang, L., Feng, G., Yang, B., Cao, B., Imran, M.A.: Blockchain-enabled wireless Internet of Things: performance analysis and optimal communication node deployment. IEEE Internet Things J. 6(3), 5791–5802 (2019)

    Article  Google Scholar 

  28. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and optimizing hyperledger fabric blockchain platform. In: 2018 IEEE 26th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), pp. 264–276. IEEE (2018)

    Google Scholar 

  29. Valenta, L., Rowan, B.: Blindcoin: blinded, accountable mixes for bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 112–126. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_9

    Chapter  Google Scholar 

  30. Wang, Y., et al.: Formal specification and verification of smart contracts for azure blockchain. arXiv preprint arXiv:1812.08829 (2018)

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China (No. 61972118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongqing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, D., Jiang, C., Liu, Y., Tang, L., Yan, L. (2021). A Survey on Security and Performance Optimization of Blockchain. In: Gao, H., Fan, P., Wun, J., Xiaoping, X., Yu, J., Wang, Y. (eds) Communications and Networking. ChinaCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-67720-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67720-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67719-0

  • Online ISBN: 978-3-030-67720-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics