Skip to main content

Image Registration Improved by Generative Adversarial Networks

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12573))

Included in the following conference series:

Abstract

The performances of most image registrations will decrease if the quality of the image to be registered is poor, especially contaminated with heavy distortions such as noise, blur, and uneven degradation. To solve this problem, a generative adversarial networks (GANs) based approach and the specified loss functions are proposed to improve image quality for better registration. Specifically, given the paired images, the generator network enhances the distorted image and the discriminator network compares the enhanced image with the ideal image. To efficiently discriminate the enhanced image, the loss function is designed to describe the perceptual loss and the adversarial loss, where the former measures the image similarity and the latter pushes the enhanced solution to natural image manifold. After enhancement, image features are more accurate and the registrations between feature point pairs will be more consistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zitováand, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21, 977–1000 (2003)

    Article  Google Scholar 

  2. Barnea, D.I., Silverman, H.F.: A class of algorithms for fast digital image registration. IEEE Trans. Comput. 21, 179–186 (1972)

    Article  Google Scholar 

  3. Guo, X., Xu, Z., Lu, Y., Pang, Y.: An application of Fourier–Mellin transform in image registration. In: Proceedings of the 5th International Conference on Computer and Information Technology (CIT), Shanghai, China, September 2005, pp. 619–623 (2005)

    Google Scholar 

  4. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  6. Dosovitskiy, A., Fischer, P., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(9), 1734–1747 (2016)

    Article  Google Scholar 

  7. Yang, Z., Dan, T., Yang, Y.: Multi-temporal remote sensing image registration using deep convolutional features. IEEE Access 6, 38544–38555 (2018)

    Article  Google Scholar 

  8. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  9. DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)

  10. Liao, R., et al.: An artificial agent for robust image registration. In: AAAI, pp. 4168–4175 (2017)

    Google Scholar 

  11. Nguyen, T., Chen, S.W., Shivakumar, S.S., Taylor, C.J., Kumar, V.: Unsupervised deep homography: a fast and robust homography estimation model. arXiv preprint arXiv:1709.03966 (2017)

  12. Divya, K.A., Roshna, K.I.: A survey on various image enhancement algorithms for naturalness preservation. Int. J. Comput. Sci. Inf. Technol. 6, 2043–2045 (2015)

    Google Scholar 

  13. Bedi, S., Khandelwal, R.: Various image enhancement techniques—a critical review. Int. J. Adv. Res. Comput. Commun. Eng. 2(3), 1605–1609 (2013)

    Google Scholar 

  14. Yang, F., Wu, J.: An improved image contrast enhancement in multiple-peak images based on histogram equalization. In: 2010 International Conference on Computer Design and Applications, vol. 1, no. 4, pp. 346–349. IEEE (2010)

    Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  16. Ignatov, A., Kobyshev, N., Vanhoey, K., Timofte, R., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  17. Chen, Y.-S., Wang, Y.-C., Kao, M.-H., Chuang, Y.-Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 6306–6314 (2018)

    Google Scholar 

  18. Huang, J., et al.: Range scaling global U-net for perceptual image enhancement on mobile devices. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 230–242. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_15

    Chapter  Google Scholar 

  19. Tripathi, S., Lipton, Z.C., Nguyen, T.Q.: Correction by projection: denoising images with generative adversarial networks. arXiv:1803.04477 (2018)

  20. Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network-based noise modeling. In: Proceedings of the IEEE International Conference Computer Vision Pattern Recognition, pp. 3155–3164, June 2018

    Google Scholar 

  21. Meng, Y., Kong, D., Zhu, Z., Zhao, Y.: From night to day: GANs based low quality image enhancement. Neural Process. Lett. 50(1), 799–814 (2019). https://doi.org/10.1007/s11063-018-09968-2

    Article  Google Scholar 

  22. Jiang, Y., et al.: Enlightengan: deep light enhancement without paired supervision. arXiv:1906.06972 (2019)

  23. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  24. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs.arXiv e-prints arXiv:1704.00028 (2017). Advances in Neural Information Processing Systems 31 (NIPS 2017)

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  26. Aly, H.A., Dubois, E.: Image up-sampling using total variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647–1659 (2005)

    Article  Google Scholar 

  27. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms (2008)

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)

    Google Scholar 

  29. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  30. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR, pp. 233–240 (2011)

    Google Scholar 

  31. Pan, J., Hu, Z., Su, Z., Yang, M.-H.: Deblurring text imagesvia L0-regularized intensity and gradient prior. In: CVPR, pp. 2901–2908 (2014)

    Google Scholar 

  32. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the IEEE International Conference on Computer Vision, Barcelona, Spain, November 2011, pp. 2564–2571 (2011)

    Google Scholar 

  33. Calonder, M., Lepetit, V., Özuysal, M., Trzinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Machine Intell. 34(7), 1281–1298 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ci Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, S., Wang, C., Huang, C. (2021). Image Registration Improved by Generative Adversarial Networks. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics