Lecture Notes in Computer Science

12601

Founding Editors

Gerhard Goos Karlsruhe Institute of Technology, Karlsruhe, Germany Juris Hartmanis Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino Purdue University, West Lafayette, IN, USA Wen Gao Peking University, Beijing, China Bernhard Steffen TU Dortmund University, Dortmund, Germany Gerhard Woeginger RWTH Aachen, Aachen, Germany Moti Yung Columbia University, New York, NY, USA More information about this subseries at http://www.springer.com/series/7407

Apurva Mudgal · C. R. Subramanian (Eds.)

Algorithms and Discrete Applied Mathematics

7th International Conference, CALDAM 2021 Rupnagar, India, February 11–13, 2021 Proceedings

Editors Apurva Mudgal Indian Institute of Technology Ropar Rupnagar, India

C. R. Subramanian The Institute of Mathematical Sciences Chennai, India

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Computer Science ISBN 978-3-030-67898-2 ISBN 978-3-030-67899-9 (eBook) https://doi.org/10.1007/978-3-030-67899-9

LNCS Sublibrary: SL1 - Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at CALDAM 2021 (the 7th International Conference on Algorithms and Discrete Applied Mathematics) held during February 11–13, 2021 at IIT Ropar, Rupnagar, Punjab, India. CALDAM 2021 was organised by the Department of Computer Science and Engineering, Indian Institute of Technology Ropar, and the Association for Computer Science and Discrete Mathematics (ACSDM), India. The program committee consisted of 31 highly experienced and active researchers from various countries.

The conference had papers in the areas of algorithms, graph theory, combinatorics, computational geometry, discrete geometry, and computational complexity. We received 82 submissions with authors from all over the world. Each paper was extensively reviewed by program committee members and other expert reviewers. The committee decided to accept 39 papers for presentation. The program included two Google invited talks by Professors Martin Fürer (of Pennsylvania State University) and Anil Maheshwari (of Carleton University).

As volume editors, we would like to thank the authors of all submissions for considering CALDAM 2021 for potential presentation of their works. We are very much indebted to the program committee members and the external reviewers for providing serious reviews within a very short period of time. We thank Springer for publishing the proceedings in the Lecture Notes in Computer Science series. Our sincerest thanks are due to the invited speakers Martin Fürer and Anil Maheshwari for accepting our invitation to give a talk. We thank the organizing committee chaired by Nitin Auluck and Arti Pandey of Indian Institute of Technology Ropar for the smooth conduct of CALDAM 2021 and Indian Institute of Technology Ropar for providing the necessary facilities. We are very grateful to the chair of the steering committee, Subir Ghosh, for his active help, support, and guidance throughout. We thank our sponsors Google Inc. for their financial support. We also thank Springer for its support for the best paper presentation awards. We thank the EasyChair and Springer OCS conference management systems, which were very effective in handling the entire process.

February 2021

Apurva Mudgal C. R. Subramanian

Organization

Steering Committee

Subir Kumar Ghosh (Chair)	Ramakrishna Mission Vivekananda Educational and Research Institute, India
Gyula O. H. Katona	Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Hungary
János Pach	École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
Nicola Santoro	School of Computer Science, Carleton University, Canada
Swami Sarvattomananda	Ramakrishna Mission Vivekananda Educational and Research Institute, India
Chee Yap	Courant Institute of Mathematical Sciences, New York University, USA

Program Committee

Amitabha Bagchi	Indian Institute of Technology Delhi, India
Aritra Banik	National Institute of Science Education and Research,
	Bhubaneswar, India
Niranjan Balachandran	Indian Institute of Technology Bombay, India
Boštjan Brešar	University of Maribor, Slovenia
Manoj Changat	University of Kerala, India
Sandip Das	ISI Kolkata, India
Josep Diaz	Polytechnic University of Catalonia, Spain
Martin Fürer	The Pennsylvania State University, USA
Sumit Ganguly	Indian Institute of Technology Kanpur, India
Daya Gaur	University of Lethbridge, Canada
Sathish Govindarajan	Indian Institute of Science Bangalore, India
Pavol Hell	Simon Fraser University, Canada
R. Inkulu	Indian Institute of Technology Guwahati, India
Christos Kaklamanis	University of Patras, Greece
S. Kalyanasundaram	Indian Institute of Technology Hyderabad, India
Van Bang Le	Universität Rostock, Germany
Andrzej Lingas	Lund University, Sweden
Anil Maheshwari	Carleton University, Canada
Bodo Manthey	University of Twente, Netherlands
Bojan Mohar	Simon Fraser University, Canada
Apurva Mudgal (Co-chair)	Indian Institute of Technology Ropar, India
Rahul Muthu	Dhirubhai Ambani Institute of Information
	and Communication Technology, India

Indian Institute of Technology Madras, India
Indian Institute of Technology Delhi, India
University of Maribor, Slovenia
Pondicherry University, India
Indian Institute of Technology Bombay, India
Indian Institute of Technology Dharwad, India
Carleton University, Canada
University of Bordeaux, France
The Institute of Mathematical Sciences, Chennai, India

Organizing Committee

Nitin Auluck (Co-chair)	Indian Institute of Technology Donor India
Niulii Auluck (Co-chail)	Indian Institute of Technology Ropar, India
Swami Dhyanagamyananda	Ramakrishna Mission Vivekananda Educational and
	Research Institute, India
Shweta Jain	Indian Institute of Technology Ropar, India
Pritee Khanna	Indian Institute of Information Technology, Design and
	Manufacturing Jabalpur, India
Kaushik Mondal	Indian Institute of Technology Ropar, India
Arti Pandey (Co-chair)	Indian Institute of Technology Ropar, India
M. Prabhakar	Indian Institute of Technology Ropar, India
Somitra K. Sanadhya	Indian Institute of Technology Jodhpur, India
Tarkeshwar Singh	BITS Pilani Goa, India
Rishi Ranjan Singh	Indian Institute of Technology Bhilai, India

Additional Reviewers

Hossein Abdollahzadeh Ahangar	
Bijo S. Anand]
N. R. Aravind	1
Pradeesha Ashok]
Jasine Babu]
Kannan Balakrishnan]
Susobhan Bandopadhyay]
Sayan Bandyapadhyay]
Julien Bensmail]
Benjamin Bergougnoux]
Srimanta Bhattacharya	
Sujoy Bhore	(
Dragana Božović	(
Christoph Brause	
Sergio Cabello	
Franco Chiaraluce	1
Pavan P. D.	1

Arun Kumar Das Hiranya Dey Andrzej Dudek Brice Effantin David Eppstein Rudolf Fleischer Florent Foucaud Maria Francis Iqra Altaf Gillani Daniel Gonçalves Sushmita Gupta Gregory Gutin Gowramma B. H. Shenwei Huang Jesper Jansson Anjeneya Swami Kare Aleksander Kelenc

Linda Kleist Mirosław Kowaluk Christian Laforest Juho Lauri Christos Levcopoulos Carlos Vinícius G. C. Lima Daniel Lokshtanov Tomas Madaras Rogers Mathew Neeldhara Misra Kaushik Mondal William K. Moses, Jr. Soumen Nandi Narayanan Narayanan Francis P. Sajith Padinhatteeri Anantha Padmanabha Sagartanu Pal Sudebkumar Prasant Pal Fahad Panolan

Subhabrata Paul Bernard Ries Leonardo Sampaio Rocha Aniket Basu Roy Taruni S. Vladimir Samodivkin Brahadeesh Sankaranarayanan Pradeep Sarvepalli Saket Saurabh Ingo Schiermeyer Jin Sima Vaishnavi Sundararajan Kavaskar T. Aleksandra Tepeh Rakesh Venkat S. Venkitesh Koichi Wada Ismael González Yero Paweł Żyliński

Abstracts of Invited Talks

Width Parameters for Hard and Easy Problems

Martin Fürer

Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA 16802, USA fhs@psu.edu

Abstract. The most obvious success of width parameters is the abundance of algorithms that make NP-hard problems FPT (fixed parameter tractable). These FPT algorithms are often very efficient for small parameter values. However, the origin of the notion of treewidth is also tied to solving systems of sparse linear equations. For large sparse system, a cubic algorithm is not good enough. Traditionally, such systems have been approached by heuristics trying to minimize the fill-in by appropriate pivot strategies for Gaussian elimination.

In the most prevalent case of systems of linear equations, the matrix is symmetric and positive definite, always allowing a diagonal pivot strategy. This results in an $O(k^2n)$ algorithm for an $n \times n$ matrix with treewidth k. If the matrix is symmetric, but not positive definite, then off-diagonal pivots are sometimes required. Nevertheless, the matrix can be kept symmetric throughout the algorithm. However, for a long time, it seemed impossible to control the fill-in for treewidth k matrices. Recently, this has been achieved for cliquewidth k and for treewidth k, by a delaying method. This results in an $O(k^2n)$ algorithm for determining the number of eigenvalues of a graph in a given interval, an important task in spectral graph theory.

A major obstacle for employing treewidth as a tool for efficient algorithms is the construction of tree decompositions of small width and the computation of the treewidth itself. There has been significant progress in this respect, with many challenges still ahead.

A simple modification of the definition of cliquewidth results in the notion of multi-cliquewidth. For many graphs, the clique-width is exponentially larger than the multi-cliquewidth. Nevertheless for some fundamental problems, like Maximum Independent Set and Chromatic Number, the running times of the standard dynamic programming algorithms are the same functions of the multi-cliquewidth as of the cliquewidth. Thus an exponential speed-up is achieved for these graphs by using multi-cliquewidth instead of cliquewidth, assuming the corresponding tree decompositions are known.

Matching and Spanning Trees in Geometric Graphs

Anil Maheshwari

School of Computer Science, Carleton University, Ottawa ON, Canada anil@scs.carleton.ca

Abstract. In this talk, we survey some recent work on matching and spanning trees in geometric graphs.

The *matching problem* is to find the largest set of independent edges in a graph. We are especially interested in graphs whose edge set is defined with respect to geometrical shapes. For a given shape S, and a point set P in the plane, the graph $G_S = (P, E)$ has an edge between two points $p, q \in P$ if there exists a shape S that has p and q on its boundary, and it does not contain any point of P in its interior. The Delaunay triangulation, L_{∞} -Delaunay, Θ_6 graph, and Gabriel graphs are obtained by considering S to be a circle, a square, an equilateral triangle, and a diametral disk, respectively. We will outline results on matchings in G_S where S is a circle, a square, an equilateral triangle, a diametral-disk, etc. We will consider variants of geometric matching problems such as the bottleneck matching - find a perfect matching that minimizes the length of the longest edge; the plane matching - find a maximum matching so that the edges in the matching are pairwise non-crossing; the strong matching - find a maximum matching so that the shapes representing the edges of the matchings are pairwise disjoint; local-to-global - matching M is said to be k- local optimal if for any subset $M' \subset M$ of k edges, the optimal matching of the endpoints of M' is M'. Do k-local matchings approximate global matchings?

We will highlight some recent algorithmic results on the computation of spanning trees in bipartite and complete geometric graphs for a point set in the plane. We wish to compute spanning trees that optimize the total weight and are plane, or have bounded degree, or minimize the bottleneck length and are of bounded degree, or have all incident edges within a cone of a specific angle.

Research supported by the Natural Sciences and Engineering Research Council of Canada.

Contents

Approximation Algorithms

Online Bin Packing with Overload Cost	3
Scheduling Trains with Small Stretch on a Unidirectional Line Apoorv Garg and Abhiram Ranade	16
Algorithmic Aspects of Total Roman and Total Double Roman Domination in Graphs Chakradhar Padamutham and Venkata Subba Reddy Palagiri	32
Approximation Algorithms for Orthogonal Line Centers Arun Kumar Das, Sandip Das, and Joydeep Mukherjee	43
Semitotal Domination on AT-Free Graphs and Circle Graphs Ton Kloks and Arti Pandey	55
Burning Grids and Intervals Arya Tanmay Gupta, Swapnil A. Lokhande, and Kaushik Mondal	66
Parameterized Algorithms	
On Parameterized Complexity of Liquid Democracy Palash Dey, Arnab Maiti, and Amatya Sharma	83
Acyclic Coloring Parameterized by Directed Clique-Width Frank Gurski, Dominique Komander, and Carolin Rehs	95
On Structural Parameterizations of Load Coloring I. Vinod Reddy	109
One-Sided Discrete Terrain Guarding and Chordal Graphs	122
Parameterized Complexity of Locally Minimal Defensive Alliances Ajinkya Gaikwad, Soumen Maity, and Shuvam Kant Tripathi	135
Computational Geometry	

New Variants of Perfect Non-crossing Matchings	151
Ioannis Mantas, Marko Savić, and Hendrik Schrezenmaier	

Cause I'm a Genial Imprecise Point: Outlier Detection for Uncertain Data Vahideh Keikha, Hamidreza Keikha, and Ali Mohades	165
A Worst-Case Optimal Algorithm to Compute the Minkowski Sum of Convex Polytopes	179
On the Intersections of Non-homotopic Loops Václav Blažej, Michal Opler, Matas Šileikis, and Pavel Valtr	196
Graph Theory	
On cd-Coloring of Trees and Co-bipartite Graphs M. A. Shalu and V. K. Kirubakaran	209
Cut Vertex Transit Functions of Hypergraphs Manoj Changat, Ferdoos Hossein Nezhad, and Peter F. Stadler	222
Lexicographic Product of Digraphs and Related Boundary-Type Sets Manoj Changat, Prasanth G. Narasimha-Shenoi, and Mary Shalet Thottungal Joseph	234
The Connected Domination Number of Grids Adarsh Srinivasan and N. S. Narayanaswamy	247
On Degree Sequences and Eccentricities in Pseudoline Arrangement Graphs Sandip Das, Siddani Bhaskara Rao, and Uma kant Sahoo	259
Cops and Robber on Butterflies and Solid Grids Sheikh Shakil Akhtar, Sandip Das, and Harmender Gahlawat	272
b-Coloring of Some Powers of Hypercubes P. Francis, S. Francis Raj, and M. Gokulnath	282
Chromatic Bounds for the Subclasses of pK_2 -Free Graphs Athmakoori Prashant and M. Gokulnath	288
Axiomatic Characterization of the Median Function of a Block Graph Manoj Changat, Nella Jeena Jacob, and Prasanth G. Narasimha-Shenoi	294
On Coupon Coloring of Cartesian Product of Some Graphs P. Francis and Deepak Rajendraprasad	309
On the Connectivity and the Diameter of Betweenness-Uniform Graphs David Hartman, Aneta Pokorná, and Pavel Valtr	317

Combinatorics and Algorithms

On Algorithms to Find <i>p</i> -ordering Aditya Gulati, Sayak Chakrabarti, and Rajat Mittal	333
Experimental Evaluation of a Local Search Approximation Algorithm for the Multiway Cut Problem Andrew Bloch-Hansen, Nasim Samei, and Roberto Solis-Oba	346
Algorithmic Analysis of Priority-Based Bin Packing Piotr Wojciechowski, K. Subramani, Alvaro Velasquez, and Bugra Caskurlu	359
Recursive Methods for Some Problems in Coding and Random Permutations <i>Ghurumuruhan Ganesan</i>	373
Achieving Positive Rates with Predetermined Dictionaries Ghurumuruhan Ganesan	385
Characterization of Dense Patterns Having Distinct Squares	397
Graph Algorithms	
Failure and Communication in a Synchronized Multi-drone System Sergey Bereg, José Miguel Díaz-Báñez, Paul Horn, Mario A. Lopez, and Jorge Urrutia	413
Memory Optimal Dispersion by Anonymous Mobile Robots Archak Das, Kaustav Bose, and Buddhadeb Sau	426
Quantum and Approximation Algorithms for Maximum Witnesses of Boolean Matrix Products <i>Mirosław Kowaluk and Andrzej Lingas</i>	440
Template-Driven Rainbow Coloring of Proper Interval Graphs L. Sunil Chandran, Sajal K. Das, Pavol Hell, Sajith Padinhatteeri, and Raji R. Pillai	452
Minimum Consistent Subset of Simple Graph Classes Sanjana Dey, Anil Maheshwari, and Subhas C. Nandy	471
Computational Complexity	
Balanced Connected Graph Partition	487

xviii	Contents

Hardness Results of Global Roman Domination in Graphs B. S. Panda and Pooja Goyal	
Author Index	513